C4graphGraph forms for C4 [ 132, 2 ] = C_132(1,23)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 132, 2 ] = C_132(1,23).

(I) Following is a form readable by MAGMA:

g:=Graph<132|{ {2, 3}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {1, 2}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {3, 4}, {131, 132}, {123, 124}, {115, 116}, {107, 108}, {99, 100}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {7, 8}, {119, 120}, {103, 104}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {8, 31}, {104, 127}, {96, 119}, {40, 63}, {32, 55}, {64, 87}, {72, 95}, {1, 24}, {103, 126}, {101, 124}, {99, 122}, {97, 120}, {39, 62}, {37, 60}, {35, 58}, {33, 56}, {3, 26}, {5, 28}, {7, 30}, {65, 88}, {67, 90}, {69, 92}, {71, 94}, {2, 25}, {102, 125}, {98, 121}, {38, 61}, {34, 57}, {6, 29}, {66, 89}, {70, 93}, {4, 27}, {111, 112}, {100, 123}, {47, 48}, {36, 59}, {15, 16}, {68, 91}, {79, 80}, {9, 32}, {95, 118}, {93, 116}, {91, 114}, {31, 54}, {29, 52}, {11, 34}, {13, 36}, {15, 38}, {25, 48}, {27, 50}, {73, 96}, {75, 98}, {77, 100}, {79, 102}, {89, 112}, {10, 33}, {94, 117}, {30, 53}, {14, 37}, {26, 49}, {74, 97}, {78, 101}, {90, 113}, {12, 35}, {92, 115}, {28, 51}, {76, 99}, {16, 39}, {24, 47}, {80, 103}, {88, 111}, {17, 40}, {19, 42}, {21, 44}, {23, 46}, {81, 104}, {83, 106}, {85, 108}, {87, 110}, {18, 41}, {22, 45}, {82, 105}, {86, 109}, {20, 43}, {95, 96}, {31, 32}, {84, 107}, {41, 64}, {47, 70}, {45, 68}, {43, 66}, {57, 80}, {59, 82}, {61, 84}, {63, 86}, {42, 65}, {46, 69}, {58, 81}, {62, 85}, {2, 111}, {16, 125}, {18, 127}, {1, 110}, {44, 67}, {17, 126}, {60, 83}, {3, 112}, {7, 116}, {11, 120}, {15, 124}, {4, 113}, {6, 115}, {12, 121}, {14, 123}, {5, 114}, {48, 71}, {13, 122}, {56, 79}, {49, 72}, {51, 74}, {53, 76}, {55, 78}, {50, 73}, {54, 77}, {8, 117}, {10, 119}, {9, 118}, {52, 75}, {63, 64}, {1, 132}, {19, 128}, {23, 132}, {20, 129}, {22, 131}, {21, 130}, {105, 128}, {109, 132}, {107, 130}, {106, 129}, {108, 131}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 24)(3, 47)(4, 70)(5, 93)(6, 116)(8, 30)(9, 53)(10, 76)(11, 99)(12, 122)(14, 36)(15, 59)(16, 82)(17, 105)(18, 128)(20, 42)(21, 65)(22, 88)(23, 111)(26, 48)(27, 71)(28, 94)(29, 117)(32, 54)(33, 77)(34, 100)(35, 123)(38, 60)(39, 83)(40, 106)(41, 129)(44, 66)(45, 89)(46, 112)(50, 72)(51, 95)(52, 118)(56, 78)(57, 101)(58, 124)(62, 84)(63, 107)(64, 130)(68, 90)(69, 113)(74, 96)(75, 119)(80, 102)(81, 125)(86, 108)(87, 131)(92, 114)(98, 120)(104, 126)(110, 132)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132)
c: (2, 110)(3, 87)(4, 64)(5, 41)(6, 18)(7, 127)(8, 104)(9, 81)(10, 58)(11, 35)(13, 121)(14, 98)(15, 75)(16, 52)(17, 29)(19, 115)(20, 92)(21, 69)(22, 46)(24, 132)(25, 109)(26, 86)(27, 63)(28, 40)(30, 126)(31, 103)(32, 80)(33, 57)(36, 120)(37, 97)(38, 74)(39, 51)(42, 114)(43, 91)(44, 68)(47, 131)(48, 108)(49, 85)(50, 62)(53, 125)(54, 102)(55, 79)(59, 119)(60, 96)(61, 73)(65, 113)(66, 90)(70, 130)(71, 107)(72, 84)(76, 124)(77, 101)(82, 118)(83, 95)(88, 112)(93, 129)(94, 106)(99, 123)(105, 117)(116, 128)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 132, 2 ]
132
-1 110 132 2 24
-2 1 111 3 25
-3 2 112 4 26
-4 3 113 5 27
-5 4 114 6 28
-6 5 115 7 29
-7 6 116 8 30
-8 7 117 9 31
-9 8 118 10 32
-10 11 33 9 119
-11 12 34 10 120
-12 11 121 13 35
-13 12 122 14 36
-14 13 123 15 37
-15 14 124 16 38
-16 15 125 17 39
-17 16 126 18 40
-18 17 127 19 41
-19 18 128 20 42
-20 19 129 21 43
-21 22 44 20 130
-22 23 45 21 131
-23 22 132 24 46
-24 1 23 25 47
-25 2 24 26 48
-26 3 25 27 49
-27 4 26 28 50
-28 5 27 29 51
-29 6 28 30 52
-30 7 29 31 53
-31 8 30 32 54
-32 33 55 9 31
-33 34 56 10 32
-34 11 33 35 57
-35 12 34 36 58
-36 13 35 37 59
-37 14 36 38 60
-38 15 37 39 61
-39 16 38 40 62
-40 17 39 41 63
-41 18 40 42 64
-42 19 41 43 65
-43 44 66 20 42
-44 45 67 21 43
-45 22 44 46 68
-46 23 45 47 69
-47 24 46 48 70
-48 25 47 49 71
-49 26 48 50 72
-50 27 49 51 73
-51 28 50 52 74
-52 29 51 53 75
-53 30 52 54 76
-54 55 77 31 53
-55 56 78 32 54
-56 33 55 57 79
-57 34 56 58 80
-58 35 57 59 81
-59 36 58 60 82
-60 37 59 61 83
-61 38 60 62 84
-62 39 61 63 85
-63 40 62 64 86
-64 41 63 65 87
-65 66 88 42 64
-66 67 89 43 65
-67 44 66 68 90
-68 45 67 69 91
-69 46 68 70 92
-70 47 69 71 93
-71 48 70 72 94
-72 49 71 73 95
-73 50 72 74 96
-74 51 73 75 97
-75 52 74 76 98
-76 77 99 53 75
-77 78 100 54 76
-78 55 77 79 101
-79 56 78 80 102
-80 57 79 81 103
-81 58 80 82 104
-82 59 81 83 105
-83 60 82 84 106
-84 61 83 85 107
-85 62 84 86 108
-86 63 85 87 109
-87 88 110 64 86
-88 89 111 65 87
-89 66 88 90 112
-90 67 89 91 113
-91 68 90 92 114
-92 69 91 93 115
-93 70 92 94 116
-94 71 93 95 117
-95 72 94 96 118
-96 73 95 97 119
-97 74 96 98 120
-98 99 121 75 97
-99 100 122 76 98
-100 77 99 101 123
-101 78 100 102 124
-102 79 101 103 125
-103 80 102 104 126
-104 81 103 105 127
-105 82 104 106 128
-106 83 105 107 129
-107 84 106 108 130
-108 85 107 109 131
-109 110 132 86 108
-110 1 111 87 109
-111 88 110 2 112
-112 89 111 3 113
-113 90 112 4 114
-114 91 113 5 115
-115 92 114 6 116
-116 93 115 7 117
-117 94 116 8 118
-118 95 117 9 119
-119 96 118 10 120
-120 11 121 97 119
-121 12 122 98 120
-122 99 121 13 123
-123 100 122 14 124
-124 101 123 15 125
-125 102 124 16 126
-126 103 125 17 127
-127 104 126 18 128
-128 105 127 19 129
-129 106 128 20 130
-130 107 129 21 131
-131 22 132 108 130
-132 1 23 109 131
0

**************