C4graphGraph forms for C4 [ 132, 3 ] = C_132(1,43)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 132, 3 ] = C_132(1,43).

(I) Following is a form readable by MAGMA:

g:=Graph<132|{ {2, 3}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {1, 2}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {3, 4}, {131, 132}, {123, 124}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {51, 52}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {7, 8}, {119, 120}, {103, 104}, {87, 88}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {15, 16}, {111, 112}, {47, 48}, {79, 80}, {4, 47}, {84, 127}, {16, 59}, {20, 63}, {64, 107}, {68, 111}, {80, 123}, {1, 44}, {3, 46}, {17, 60}, {19, 62}, {65, 108}, {67, 110}, {81, 124}, {83, 126}, {2, 45}, {18, 61}, {66, 109}, {82, 125}, {5, 48}, {7, 50}, {13, 56}, {15, 58}, {69, 112}, {71, 114}, {77, 120}, {79, 122}, {6, 49}, {14, 57}, {70, 113}, {78, 121}, {8, 51}, {12, 55}, {72, 115}, {76, 119}, {9, 52}, {11, 54}, {73, 116}, {75, 118}, {10, 53}, {95, 96}, {31, 32}, {74, 117}, {21, 64}, {31, 74}, {29, 72}, {23, 66}, {53, 96}, {55, 98}, {61, 104}, {63, 106}, {22, 65}, {30, 73}, {54, 97}, {62, 105}, {2, 91}, {38, 127}, {36, 125}, {34, 123}, {32, 121}, {4, 93}, {6, 95}, {1, 90}, {37, 126}, {33, 122}, {28, 71}, {5, 94}, {24, 67}, {56, 99}, {60, 103}, {25, 68}, {27, 70}, {57, 100}, {59, 102}, {3, 92}, {35, 124}, {26, 69}, {58, 101}, {7, 96}, {31, 120}, {15, 104}, {23, 112}, {8, 97}, {30, 119}, {28, 117}, {10, 99}, {12, 101}, {14, 103}, {24, 113}, {26, 115}, {9, 98}, {36, 79}, {32, 75}, {29, 118}, {13, 102}, {25, 114}, {48, 91}, {52, 95}, {33, 76}, {35, 78}, {49, 92}, {51, 94}, {11, 100}, {34, 77}, {27, 116}, {50, 93}, {37, 80}, {39, 82}, {45, 88}, {47, 90}, {38, 81}, {46, 89}, {16, 105}, {18, 107}, {20, 109}, {22, 111}, {17, 106}, {44, 87}, {40, 83}, {21, 110}, {41, 84}, {43, 86}, {19, 108}, {42, 85}, {63, 64}, {1, 132}, {39, 128}, {40, 129}, {42, 131}, {41, 130}, {43, 132}, {85, 128}, {87, 130}, {86, 129}, {88, 131}, {89, 132}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 90)(3, 47)(5, 93)(6, 50)(8, 96)(9, 53)(11, 99)(12, 56)(14, 102)(15, 59)(17, 105)(18, 62)(20, 108)(21, 65)(23, 111)(24, 68)(26, 114)(27, 71)(29, 117)(30, 74)(32, 120)(33, 77)(35, 123)(36, 80)(38, 126)(39, 83)(41, 129)(42, 86)(44, 132)(45, 89)(48, 92)(51, 95)(54, 98)(57, 101)(60, 104)(63, 107)(66, 110)(69, 113)(72, 116)(75, 119)(78, 122)(81, 125)(84, 128)(87, 131)
b: (2, 44)(3, 87)(4, 130)(5, 41)(6, 84)(7, 127)(8, 38)(9, 81)(10, 124)(11, 35)(12, 78)(13, 121)(14, 32)(15, 75)(16, 118)(17, 29)(18, 72)(19, 115)(20, 26)(21, 69)(22, 112)(24, 66)(25, 109)(27, 63)(28, 106)(30, 60)(31, 103)(33, 57)(34, 100)(36, 54)(37, 97)(39, 51)(40, 94)(42, 48)(43, 91)(46, 88)(47, 131)(49, 85)(50, 128)(52, 82)(53, 125)(55, 79)(56, 122)(58, 76)(59, 119)(61, 73)(62, 116)(64, 70)(65, 113)(68, 110)(71, 107)(74, 104)(77, 101)(80, 98)(83, 95)(86, 92)(90, 132)(93, 129)(96, 126)(99, 123)(102, 120)(105, 117)(108, 114)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 132, 3 ]
132
-1 44 132 2 90
-2 1 45 3 91
-3 2 46 4 92
-4 3 47 5 93
-5 4 48 6 94
-6 5 49 7 95
-7 6 50 8 96
-8 7 51 9 97
-9 8 52 10 98
-10 11 99 9 53
-11 12 100 10 54
-12 11 55 13 101
-13 12 56 14 102
-14 13 57 15 103
-15 14 58 16 104
-16 15 59 17 105
-17 16 60 18 106
-18 17 61 19 107
-19 18 62 20 108
-20 19 63 21 109
-21 22 110 20 64
-22 23 111 21 65
-23 22 66 24 112
-24 23 67 25 113
-25 24 68 26 114
-26 25 69 27 115
-27 26 70 28 116
-28 27 71 29 117
-29 28 72 30 118
-30 29 73 31 119
-31 30 74 32 120
-32 33 121 31 75
-33 34 122 32 76
-34 33 77 35 123
-35 34 78 36 124
-36 35 79 37 125
-37 36 80 38 126
-38 37 81 39 127
-39 38 82 40 128
-40 39 83 41 129
-41 40 84 42 130
-42 41 85 43 131
-43 44 132 42 86
-44 1 45 43 87
-45 44 88 2 46
-46 45 89 3 47
-47 46 90 4 48
-48 47 91 5 49
-49 48 92 6 50
-50 49 93 7 51
-51 50 94 8 52
-52 51 95 9 53
-53 52 96 10 54
-54 11 55 53 97
-55 12 56 54 98
-56 55 99 13 57
-57 56 100 14 58
-58 57 101 15 59
-59 58 102 16 60
-60 59 103 17 61
-61 60 104 18 62
-62 61 105 19 63
-63 62 106 20 64
-64 63 107 21 65
-65 22 66 64 108
-66 23 67 65 109
-67 66 110 24 68
-68 67 111 25 69
-69 68 112 26 70
-70 69 113 27 71
-71 70 114 28 72
-72 71 115 29 73
-73 72 116 30 74
-74 73 117 31 75
-75 74 118 32 76
-76 33 77 75 119
-77 34 78 76 120
-78 77 121 35 79
-79 78 122 36 80
-80 79 123 37 81
-81 80 124 38 82
-82 81 125 39 83
-83 82 126 40 84
-84 83 127 41 85
-85 84 128 42 86
-86 85 129 43 87
-87 44 88 86 130
-88 45 89 87 131
-89 88 132 46 90
-90 1 89 47 91
-91 2 90 48 92
-92 3 91 49 93
-93 4 92 50 94
-94 5 93 51 95
-95 6 94 52 96
-96 7 95 53 97
-97 8 96 54 98
-98 55 99 9 97
-99 56 100 10 98
-100 11 99 57 101
-101 12 100 58 102
-102 13 101 59 103
-103 14 102 60 104
-104 15 103 61 105
-105 16 104 62 106
-106 17 105 63 107
-107 18 106 64 108
-108 19 107 65 109
-109 66 110 20 108
-110 67 111 21 109
-111 22 110 68 112
-112 23 111 69 113
-113 24 112 70 114
-114 25 113 71 115
-115 26 114 72 116
-116 27 115 73 117
-117 28 116 74 118
-118 29 117 75 119
-119 30 118 76 120
-120 77 121 31 119
-121 78 122 32 120
-122 33 121 79 123
-123 34 122 80 124
-124 35 123 81 125
-125 36 124 82 126
-126 37 125 83 127
-127 38 126 84 128
-128 39 127 85 129
-129 40 128 86 130
-130 41 129 87 131
-131 88 132 42 130
-132 1 89 43 131
0

**************