[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 132, 6 ] =
Pr_44(1,9,13,21).
(I) Following is a form readable by MAGMA:
g:=Graph<132|{ {2, 3}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32,
33}, {30, 31}, {28, 29}, {26, 27}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {1, 2}, {41, 42},
{37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22},
{25, 26}, {3, 4}, {43, 44}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {80, 93},
{82, 95}, {7, 8}, {39, 40}, {23, 24}, {81, 94}, {79, 92}, {76, 89}, {106, 127},
{104, 125}, {98, 119}, {96, 117}, {78, 91}, {77, 90}, {105, 126}, {104, 127},
{97, 118}, {96, 119}, {97, 120}, {103, 126}, {101, 124}, {99, 122}, {98, 121},
{103, 124}, {102, 125}, {99, 120}, {100, 121}, {102, 123}, {15, 16}, {101, 122},
{100, 123}, {12, 47}, {28, 63}, {16, 51}, {20, 55}, {24, 59}, {11, 46}, {27,
62}, {17, 52}, {19, 54}, {25, 60}, {10, 45}, {26, 61}, {18, 53}, {89, 112}, {95,
118}, {93, 116}, {91, 114}, {90, 113}, {95, 116}, {94, 117}, {91, 112}, {1, 45},
{2, 46}, {3, 47}, {16, 60}, {17, 61}, {18, 62}, {19, 63}, {64, 108}, {65, 109},
{66, 110}, {67, 111}, {80, 124}, {81, 125}, {82, 126}, {83, 127}, {1, 44}, {94,
115}, {21, 56}, {23, 58}, {92, 113}, {22, 57}, {93, 114}, {92, 115}, {83, 96},
{87, 100}, {4, 48}, {5, 49}, {6, 50}, {7, 51}, {12, 56}, {13, 57}, {14, 58},
{15, 59}, {68, 112}, {69, 113}, {70, 114}, {71, 115}, {76, 120}, {77, 121}, {78,
122}, {79, 123}, {84, 97}, {86, 99}, {90, 111}, {85, 98}, {89, 110}, {64, 121},
{66, 123}, {68, 125}, {70, 127}, {65, 122}, {69, 126}, {8, 52}, {9, 53}, {10,
54}, {11, 55}, {72, 116}, {73, 117}, {74, 118}, {75, 119}, {13, 48}, {15, 50},
{88, 101}, {14, 49}, {31, 32}, {67, 124}, {47, 104}, {55, 112}, {63, 120}, {46,
103}, {56, 113}, {58, 115}, {60, 117}, {62, 119}, {45, 102}, {57, 114}, {61,
118}, {59, 116}, {1, 80}, {3, 82}, {5, 84}, {7, 86}, {9, 88}, {2, 81}, {6, 85},
{20, 64}, {31, 75}, {30, 74}, {29, 73}, {28, 72}, {21, 65}, {22, 66}, {23, 67},
{52, 96}, {53, 97}, {54, 98}, {55, 99}, {60, 104}, {61, 105}, {62, 106}, {63,
107}, {4, 83}, {48, 105}, {50, 107}, {52, 109}, {54, 111}, {49, 106}, {53, 110},
{24, 68}, {27, 71}, {26, 70}, {25, 69}, {56, 100}, {57, 101}, {58, 102}, {59,
103}, {29, 64}, {31, 66}, {8, 87}, {30, 65}, {51, 108}, {32, 67}, {40, 75}, {36,
71}, {44, 79}, {33, 68}, {41, 76}, {35, 70}, {43, 78}, {34, 69}, {42, 77}, {32,
76}, {35, 79}, {34, 78}, {33, 77}, {48, 92}, {49, 93}, {50, 94}, {51, 95}, {37,
72}, {39, 74}, {38, 73}, {36, 80}, {39, 83}, {38, 82}, {37, 81}, {44, 88}, {45,
89}, {46, 90}, {47, 91}, {40, 84}, {42, 86}, {41, 85}, {43, 87}, {71, 128}, {72,
129}, {74, 131}, {73, 130}, {75, 132}, {84, 128}, {85, 129}, {86, 130}, {87,
131}, {88, 132}, {105, 128}, {109, 132}, {107, 130}, {106, 129}, {111, 132},
{107, 128}, {108, 129}, {110, 131}, {108, 131}, {109, 130} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 80)(3, 93)(4, 49)(6, 84)(7, 97)(8, 53)(10, 88)(11, 101)(12, 57)(14,
48)(15, 105)(16, 61)(18, 52)(19, 109)(20, 65)(22, 56)(23, 113)(24, 69)(26,
60)(27, 117)(28, 73)(30, 64)(31, 121)(32, 77)(34, 68)(35, 125)(36, 81)(38,
72)(39, 129)(40, 85)(42, 76)(43, 89)(44, 45)(46, 124)(47, 114)(50, 128)(51,
118)(54, 132)(55, 122)(58, 92)(59, 126)(62, 96)(63, 130)(66, 100)(67, 90)(70,
104)(71, 94)(74, 108)(75, 98)(78, 112)(79, 102)(82, 116)(83, 106)(86, 120)(87,
110) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44)(45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88)(89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
132)
c: (2, 44)(3, 43)(4, 42)(5, 41)(6, 40)(7, 39)(8, 38)(9, 37)(10, 36)(11, 35)(12,
34)(13, 33)(14, 32)(15, 31)(16, 30)(17, 29)(18, 28)(19, 27)(20, 26)(21, 25)(22,
24)(45, 80)(46, 79)(47, 78)(48, 77)(49, 76)(50, 75)(51, 74)(52, 73)(53, 72)(54,
71)(55, 70)(56, 69)(57, 68)(58, 67)(59, 66)(60, 65)(61, 64)(62, 63)(81, 88)(82,
87)(83, 86)(84, 85)(89, 93)(90, 92)(94, 132)(95, 131)(96, 130)(97, 129)(98,
128)(99, 127)(100, 126)(101, 125)(102, 124)(103, 123)(104, 122)(105, 121)(106,
120)(107, 119)(108, 118)(109, 117)(110, 116)(111, 115)(112, 114)
C4[ 132, 6 ]
132
-1 44 45 2 80
-2 1 46 3 81
-3 2 47 4 82
-4 3 48 5 83
-5 4 49 6 84
-6 5 50 7 85
-7 6 51 8 86
-8 7 52 9 87
-9 88 8 53 10
-10 11 45 9 54
-11 55 12 46 10
-12 11 56 13 47
-13 12 57 14 48
-14 13 58 15 49
-15 14 59 16 50
-16 15 60 17 51
-17 16 61 18 52
-18 17 62 19 53
-19 18 63 20 54
-20 55 19 64 21
-21 22 56 20 65
-22 66 23 57 21
-23 22 67 24 58
-24 23 68 25 59
-25 24 69 26 60
-26 25 70 27 61
-27 26 71 28 62
-28 27 72 29 63
-29 28 73 30 64
-30 29 74 31 65
-31 66 30 75 32
-32 33 67 31 76
-33 77 34 68 32
-34 33 78 35 69
-35 34 79 36 70
-36 35 80 37 71
-37 36 81 38 72
-38 37 82 39 73
-39 38 83 40 74
-40 39 84 41 75
-41 40 85 42 76
-42 77 41 86 43
-43 44 78 42 87
-44 88 1 79 43
-45 1 89 102 10
-46 11 2 90 103
-47 12 3 91 104
-48 13 4 92 105
-49 14 5 93 106
-50 15 6 94 107
-51 16 7 95 108
-52 17 8 96 109
-53 110 18 9 97
-54 111 19 10 98
-55 11 99 112 20
-56 12 100 113 21
-57 22 13 101 114
-58 23 14 102 115
-59 24 15 103 116
-60 25 16 104 117
-61 26 17 105 118
-62 27 18 106 119
-63 28 19 107 120
-64 121 29 20 108
-65 122 30 21 109
-66 22 110 123 31
-67 23 111 124 32
-68 33 24 112 125
-69 34 25 113 126
-70 35 26 114 127
-71 36 27 115 128
-72 37 28 116 129
-73 38 29 117 130
-74 39 30 118 131
-75 132 40 31 119
-76 89 41 32 120
-77 33 121 90 42
-78 34 122 91 43
-79 44 35 123 92
-80 1 36 124 93
-81 2 37 125 94
-82 3 38 126 95
-83 4 39 127 96
-84 5 40 128 97
-85 6 41 129 98
-86 99 7 42 130
-87 100 8 43 131
-88 44 132 101 9
-89 110 45 112 76
-90 77 111 46 113
-91 78 112 47 114
-92 79 113 48 115
-93 80 114 49 116
-94 81 115 50 117
-95 82 116 51 118
-96 83 117 52 119
-97 84 118 53 120
-98 121 85 119 54
-99 55 122 86 120
-100 121 56 123 87
-101 88 122 57 124
-102 45 123 58 125
-103 46 124 59 126
-104 47 125 60 127
-105 48 126 61 128
-106 49 127 62 129
-107 50 128 63 130
-108 51 129 64 131
-109 132 52 130 65
-110 66 89 53 131
-111 132 67 90 54
-112 55 89 68 91
-113 56 90 69 92
-114 57 91 70 93
-115 58 92 71 94
-116 59 93 72 95
-117 60 94 73 96
-118 61 95 74 97
-119 62 96 75 98
-120 99 63 97 76
-121 77 100 64 98
-122 99 78 101 65
-123 66 100 79 102
-124 67 101 80 103
-125 68 102 81 104
-126 69 103 82 105
-127 70 104 83 106
-128 71 105 84 107
-129 72 106 85 108
-130 73 107 86 109
-131 110 74 108 87
-132 88 111 75 109
0