[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 132, 7 ] =
SDD(C_33(1,10)).
(I) Following is a form readable by MAGMA:
g:=Graph<132|{ {66, 106}, {66, 107}, {64, 113}, {65, 112}, {64, 119}, {65, 118},
{64, 121}, {66, 123}, {65, 122}, {66, 125}, {4, 68}, {29, 93}, {5, 69}, {6, 70},
{9, 73}, {13, 77}, {44, 108}, {62, 126}, {2, 67}, {22, 87}, {50, 115}, {1, 67},
{29, 95}, {10, 72}, {49, 115}, {57, 123}, {58, 120}, {12, 79}, {63, 124}, {38,
101}, {13, 78}, {55, 116}, {1, 69}, {9, 77}, {11, 79}, {12, 72}, {13, 73}, {14,
74}, {15, 75}, {46, 106}, {57, 125}, {58, 126}, {61, 121}, {1, 68}, {2, 71}, {3,
70}, {8, 77}, {10, 79}, {23, 82}, {54, 115}, {30, 88}, {60, 122}, {62, 120}, {9,
78}, {19, 84}, {22, 81}, {43, 108}, {48, 119}, {51, 116}, {59, 124}, {2, 74},
{36, 108}, {3, 75}, {24, 80}, {42, 98}, {44, 100}, {55, 127}, {1, 72}, {29, 84},
{27, 82}, {40, 97}, {42, 99}, {54, 127}, {3, 73}, {37, 111}, {6, 76}, {20, 94},
{21, 95}, {25, 83}, {26, 80}, {52, 126}, {60, 118}, {61, 119}, {7, 76}, {30,
85}, {26, 81}, {11, 71}, {35, 111}, {34, 110}, {31, 83}, {19, 95}, {51, 127},
{56, 116}, {60, 112}, {61, 113}, {16, 93}, {21, 88}, {46, 99}, {18, 92}, {39,
105}, {19, 93}, {24, 86}, {45, 99}, {49, 127}, {17, 94}, {28, 83}, {45, 98}, {2,
82}, {3, 83}, {54, 102}, {55, 103}, {63, 111}, {10, 91}, {13, 92}, {52, 101},
{56, 105}, {4, 86}, {30, 76}, {5, 87}, {8, 90}, {41, 123}, {57, 107}, {6, 85},
{7, 84}, {22, 69}, {53, 102}, {57, 106}, {62, 109}, {4, 80}, {33, 117}, {31,
75}, {5, 81}, {48, 100}, {51, 103}, {9, 92}, {39, 114}, {11, 94}, {59, 110},
{17, 71}, {31, 73}, {43, 125}, {56, 110}, {12, 91}, {49, 102}, {58, 109}, {30,
70}, {38, 126}, {42, 114}, {45, 117}, {46, 118}, {31, 70}, {37, 124}, {36, 125},
{33, 123}, {50, 104}, {35, 120}, {48, 107}, {24, 68}, {41, 117}, {8, 85}, {6,
88}, {34, 124}, {7, 89}, {16, 78}, {17, 79}, {42, 117}, {45, 114}, {50, 109},
{5, 101}, {20, 116}, {53, 85}, {18, 115}, {27, 121}, {44, 78}, {25, 122}, {32,
67}, {4, 96}, {40, 76}, {32, 68}, {14, 106}, {15, 107}, {46, 74}, {32, 69}, {47,
74}, {63, 90}, {7, 97}, {28, 122}, {56, 94}, {23, 112}, {25, 113}, {32, 72},
{26, 114}, {47, 71}, {11, 98}, {12, 103}, {27, 112}, {15, 100}, {47, 67}, {59,
87}, {10, 103}, {28, 113}, {14, 99}, {21, 120}, {8, 102}, {23, 121}, {50, 92},
{52, 91}, {53, 90}, {40, 89}, {44, 93}, {43, 89}, {17, 98}, {26, 105}, {22,
101}, {16, 100}, {29, 104}, {34, 87}, {39, 81}, {23, 96}, {39, 80}, {33, 86},
{14, 118}, {15, 119}, {24, 96}, {25, 97}, {53, 77}, {18, 104}, {20, 110}, {21,
111}, {19, 104}, {35, 88}, {27, 96}, {48, 75}, {16, 108}, {40, 84}, {35, 95},
{20, 105}, {38, 91}, {36, 89}, {28, 97}, {47, 82}, {18, 109}, {37, 90}, {41,
86}, {34, 130}, {33, 128}, {38, 132}, {36, 129}, {37, 131}, {41, 128}, {43,
129}, {51, 131}, {52, 132}, {54, 132}, {55, 131}, {49, 132}, {58, 130}, {59,
130}, {62, 130}, {63, 131}, {60, 129}, {61, 128}, {64, 128}, {65, 129} }>;
(II) A more general form is to represent the graph as the orbit of {66, 106}
under the group generated by the following permutations:
a: (2, 5)(3, 9)(4, 10)(6, 16)(7, 19)(8, 15)(11, 26)(12, 24)(13, 31)(14, 34)(17,
39)(18, 25)(20, 42)(21, 36)(22, 47)(23, 38)(27, 52)(28, 50)(29, 40)(30, 44)(33,
51)(35, 43)(37, 57)(41, 55)(45, 56)(46, 59)(48, 53)(49, 61)(54, 64)(58, 60)(62,
65)(63, 66)(67, 69)(68, 72)(70, 78)(71, 81)(74, 87)(75, 77)(76, 93)(79, 80)(82,
101)(83, 92)(85, 100)(86, 103)(88, 108)(89, 95)(90, 107)(91, 96)(94, 114)(97,
104)(98, 105)(99, 110)(102, 119)(106, 124)(109, 122)(111, 125)(112, 126)(113,
115)(116, 117)(118, 130)(120, 129)(121, 132)(123, 131)(127, 128) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (26, 39)
c: (15, 48)
d: (19, 29)
e: (25, 28)
f: (36, 43)
g: (60, 65)
h: (21, 35)
m: (5, 22)
n1: (7, 40)
a1: (1, 2, 14, 57, 15, 3, 6, 21, 58, 38, 10, 11, 42, 33, 61, 25, 7, 19, 18, 49,
51, 20, 26, 4, 23, 60, 36, 16, 9, 8, 37, 34, 5)(12, 17, 45, 41, 64, 28, 40, 29,
50, 54, 55, 56, 39, 24, 27, 65, 43, 44, 13, 53, 63, 59, 22, 32, 47, 46, 66, 48,
31, 30, 35, 62, 52)(67, 74, 106, 107, 75, 70, 88, 120, 126, 91, 79, 98, 117,
128, 113, 97, 84, 104, 115, 127, 116, 105, 80, 96, 112, 129, 108, 78, 77, 90,
124, 87, 69)(68, 82, 118, 125, 100, 73, 85, 111, 130, 101, 72, 71, 99, 123, 119,
83, 76, 95, 109, 132, 103, 94, 114, 86, 121, 122, 89, 93, 92, 102, 131, 110,
81)
b1: (18, 50)
c1: (16, 44)
d1: (2, 47)
e1: (42, 45)
f1: (58, 62)
g1: (57, 66)
h1: (11, 17)
m1: (49, 54)
n2: (9, 13)
a2: (20, 56)
b2: (4, 24)
c2: (33, 41)
d2: (51, 55)
e2: (37, 63)
f2: (6, 30)
g2: (2, 4)(3, 7)(5, 10)(8, 21)(9, 19)(11, 26)(12, 22)(13, 29)(14, 33)(15,
36)(17, 39)(24, 47)(31, 40)(34, 51)(35, 53)(41, 46)(43, 48)(49, 58)(54, 62)(55,
59)(60, 61)(64, 65)(67, 68)(69, 72)(70, 76)(71, 80)(73, 84)(74, 86)(75, 89)(77,
95)(78, 93)(79, 81)(82, 96)(83, 97)(85, 88)(87, 103)(90, 111)(91, 101)(92,
104)(94, 105)(98, 114)(99, 117)(100, 108)(102, 120)(106, 123)(107, 125)(109,
115)(110, 116)(112, 121)(113, 122)(118, 128)(119, 129)(124, 131)(126, 132)(127,
130)
h2: (38, 52)
m2: (61, 64)
n3: (10, 12)
a3: (14, 46)
b3: (8, 53)
c3: (34, 59)
d3: (23, 27)
C4[ 132, 7 ]
132
-1 67 68 69 72
-2 67 71 82 74
-3 70 83 73 75
-4 68 80 96 86
-5 101 69 81 87
-6 88 70 85 76
-7 89 84 97 76
-8 77 90 102 85
-9 77 78 92 73
-10 79 91 103 72
-11 79 71 94 98
-12 79 91 103 72
-13 77 78 92 73
-14 99 106 74 118
-15 100 107 75 119
-16 78 100 93 108
-17 79 71 94 98
-18 92 104 115 109
-19 93 104 84 95
-20 110 94 105 116
-21 88 111 95 120
-22 101 69 81 87
-23 121 112 82 96
-24 68 80 96 86
-25 122 113 83 97
-26 80 81 114 105
-27 121 112 82 96
-28 122 113 83 97
-29 93 104 84 95
-30 88 70 85 76
-31 70 83 73 75
-32 67 68 69 72
-33 123 117 128 86
-34 110 124 130 87
-35 88 111 95 120
-36 89 125 129 108
-37 111 90 124 131
-38 132 101 91 126
-39 80 81 114 105
-40 89 84 97 76
-41 123 117 128 86
-42 99 114 117 98
-43 89 125 129 108
-44 78 100 93 108
-45 99 114 117 98
-46 99 106 74 118
-47 67 71 82 74
-48 100 107 75 119
-49 132 102 115 127
-50 92 104 115 109
-51 103 116 127 131
-52 132 101 91 126
-53 77 90 102 85
-54 132 102 115 127
-55 103 116 127 131
-56 110 94 105 116
-57 123 125 106 107
-58 126 130 109 120
-59 110 124 130 87
-60 122 112 118 129
-61 121 113 128 119
-62 126 130 109 120
-63 111 90 124 131
-64 121 113 128 119
-65 122 112 118 129
-66 123 125 106 107
-67 1 2 47 32
-68 1 24 4 32
-69 22 1 5 32
-70 3 6 30 31
-71 11 2 47 17
-72 1 12 10 32
-73 13 3 9 31
-74 2 46 14 47
-75 3 15 48 31
-76 6 7 40 30
-77 13 8 9 53
-78 44 13 16 9
-79 11 12 17 10
-80 24 4 26 39
-81 22 26 5 39
-82 23 2 47 27
-83 3 25 28 31
-84 7 29 40 19
-85 6 8 30 53
-86 33 24 4 41
-87 22 34 59 5
-88 35 6 30 21
-89 36 7 40 43
-90 37 8 63 53
-91 12 38 52 10
-92 13 50 18 9
-93 44 16 29 19
-94 11 56 17 20
-95 35 29 19 21
-96 23 24 4 27
-97 25 28 7 40
-98 11 45 17 42
-99 45 46 14 42
-100 44 15 48 16
-101 22 5 38 52
-102 49 8 53 54
-103 55 12 51 10
-104 50 18 29 19
-105 56 26 39 20
-106 66 46 57 14
-107 66 57 15 48
-108 44 36 16 43
-109 58 50 18 62
-110 34 56 59 20
-111 35 37 63 21
-112 23 27 60 65
-113 25 28 61 64
-114 45 26 39 42
-115 49 50 18 54
-116 55 56 51 20
-117 33 45 41 42
-118 46 14 60 65
-119 15 48 61 64
-120 35 58 62 21
-121 23 27 61 64
-122 25 60 28 65
-123 33 66 57 41
-124 34 37 59 63
-125 66 57 36 43
-126 58 38 62 52
-127 55 49 51 54
-128 33 61 41 64
-129 36 60 43 65
-130 34 58 59 62
-131 55 37 51 63
-132 38 49 52 54
0