[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 133, 1 ] =
C_133(1,20).
(I) Following is a form readable by MAGMA:
g:=Graph<133|{ {2, 3}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124,
125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113},
{110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98,
99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {50, 51}, {48, 49}, {46, 47}, {44,
45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28,
29}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},
{20, 21}, {22, 23}, {24, 25}, {26, 27}, {52, 53}, {54, 55}, {56, 57}, {58, 59},
{60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75},
{76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {1, 2},
{129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105,
106}, {101, 102}, {97, 98}, {93, 94}, {49, 50}, {45, 46}, {41, 42}, {37, 38},
{33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26},
{53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82},
{85, 86}, {89, 90}, {3, 4}, {131, 132}, {123, 124}, {115, 116}, {107, 108}, {99,
100}, {91, 92}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {51, 52}, {59,
60}, {67, 68}, {75, 76}, {83, 84}, {7, 8}, {119, 120}, {103, 104}, {39, 40},
{23, 24}, {55, 56}, {71, 72}, {87, 88}, {1, 21}, {107, 127}, {106, 126}, {105,
125}, {104, 124}, {99, 119}, {98, 118}, {97, 117}, {96, 116}, {43, 63}, {42,
62}, {41, 61}, {40, 60}, {35, 55}, {34, 54}, {33, 53}, {32, 52}, {2, 22}, {3,
23}, {8, 28}, {9, 29}, {10, 30}, {11, 31}, {64, 84}, {65, 85}, {66, 86}, {67,
87}, {72, 92}, {73, 93}, {74, 94}, {75, 95}, {4, 24}, {103, 123}, {102, 122},
{101, 121}, {100, 120}, {39, 59}, {38, 58}, {37, 57}, {36, 56}, {5, 25}, {6,
26}, {7, 27}, {68, 88}, {69, 89}, {70, 90}, {71, 91}, {15, 16}, {111, 112}, {47,
48}, {79, 80}, {12, 32}, {95, 115}, {94, 114}, {93, 113}, {92, 112}, {31, 51},
{30, 50}, {29, 49}, {28, 48}, {13, 33}, {14, 34}, {15, 35}, {76, 96}, {77, 97},
{78, 98}, {79, 99}, {16, 36}, {91, 111}, {90, 110}, {89, 109}, {27, 47}, {17,
37}, {18, 38}, {19, 39}, {24, 44}, {25, 45}, {26, 46}, {80, 100}, {81, 101},
{82, 102}, {83, 103}, {88, 108}, {20, 40}, {21, 41}, {22, 42}, {23, 43}, {84,
104}, {85, 105}, {86, 106}, {87, 107}, {31, 32}, {95, 96}, {44, 64}, {47, 67},
{46, 66}, {45, 65}, {60, 80}, {61, 81}, {62, 82}, {63, 83}, {2, 115}, {4, 117},
{6, 119}, {8, 121}, {10, 123}, {12, 125}, {14, 127}, {1, 114}, {5, 118}, {9,
122}, {13, 126}, {48, 68}, {49, 69}, {50, 70}, {51, 71}, {56, 76}, {57, 77},
{58, 78}, {59, 79}, {3, 116}, {11, 124}, {52, 72}, {53, 73}, {54, 74}, {55, 75},
{7, 120}, {63, 64}, {1, 133}, {15, 128}, {16, 129}, {18, 131}, {20, 133}, {17,
130}, {19, 132}, {108, 128}, {111, 131}, {110, 130}, {109, 129}, {112, 132},
{113, 133}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 21)(3, 41)(4, 61)(5, 81)(6, 101)(7, 121)(9, 28)(10, 48)(11, 68)(12,
88)(13, 108)(14, 128)(16, 35)(17, 55)(18, 75)(19, 95)(20, 115)(23, 42)(24,
62)(25, 82)(26, 102)(27, 122)(30, 49)(31, 69)(32, 89)(33, 109)(34, 129)(37,
56)(38, 76)(39, 96)(40, 116)(44, 63)(45, 83)(46, 103)(47, 123)(51, 70)(52,
90)(53, 110)(54, 130)(58, 77)(59, 97)(60, 117)(65, 84)(66, 104)(67, 124)(72,
91)(73, 111)(74, 131)(79, 98)(80, 118)(86, 105)(87, 125)(93, 112)(94, 132)(100,
119)(107, 126)(114, 133) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 114)(3, 94)(4, 74)(5, 54)(6, 34)(7, 14)(8, 127)(9, 107)(10, 87)(11,
67)(12, 47)(13, 27)(15, 120)(16, 100)(17, 80)(18, 60)(19, 40)(21, 133)(22,
113)(23, 93)(24, 73)(25, 53)(26, 33)(28, 126)(29, 106)(30, 86)(31, 66)(32,
46)(35, 119)(36, 99)(37, 79)(38, 59)(41, 132)(42, 112)(43, 92)(44, 72)(45,
52)(48, 125)(49, 105)(50, 85)(51, 65)(55, 118)(56, 98)(57, 78)(61, 131)(62,
111)(63, 91)(64, 71)(68, 124)(69, 104)(70, 84)(75, 117)(76, 97)(81, 130)(82,
110)(83, 90)(88, 123)(89, 103)(95, 116)(101, 129)(102, 109)(108, 122)(121,
128)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133)
C4[ 133, 1 ]
133
-1 133 2 114 21
-2 22 1 3 115
-3 23 2 4 116
-4 24 3 5 117
-5 25 4 6 118
-6 26 5 7 119
-7 27 6 8 120
-8 121 28 7 9
-9 122 29 8 10
-10 11 123 30 9
-11 12 124 31 10
-12 11 13 125 32
-13 33 12 14 126
-14 34 13 15 127
-15 35 14 16 128
-16 36 15 17 129
-17 37 16 18 130
-18 38 17 19 131
-19 132 39 18 20
-20 133 40 19 21
-21 22 1 41 20
-22 23 2 42 21
-23 22 24 3 43
-24 44 23 25 4
-25 45 24 26 5
-26 46 25 27 6
-27 47 26 28 7
-28 48 27 29 8
-29 49 28 30 9
-30 50 29 31 10
-31 11 51 30 32
-32 33 12 52 31
-33 34 13 53 32
-34 33 35 14 54
-35 55 34 36 15
-36 56 35 37 16
-37 57 36 38 17
-38 58 37 39 18
-39 59 38 40 19
-40 60 39 41 20
-41 61 40 42 21
-42 22 62 41 43
-43 44 23 63 42
-44 45 24 64 43
-45 44 46 25 65
-46 66 45 47 26
-47 67 46 48 27
-48 68 47 49 28
-49 69 48 50 29
-50 70 49 51 30
-51 71 50 52 31
-52 72 51 53 32
-53 33 73 52 54
-54 55 34 74 53
-55 56 35 75 54
-56 55 57 36 76
-57 77 56 58 37
-58 78 57 59 38
-59 79 58 60 39
-60 80 59 61 40
-61 81 60 62 41
-62 82 61 63 42
-63 83 62 64 43
-64 44 84 63 65
-65 66 45 85 64
-66 67 46 86 65
-67 66 68 47 87
-68 88 67 69 48
-69 89 68 70 49
-70 90 69 71 50
-71 91 70 72 51
-72 92 71 73 52
-73 93 72 74 53
-74 94 73 75 54
-75 55 95 74 76
-76 77 56 96 75
-77 78 57 97 76
-78 77 79 58 98
-79 99 78 80 59
-80 100 79 81 60
-81 101 80 82 61
-82 102 81 83 62
-83 103 82 84 63
-84 104 83 85 64
-85 105 84 86 65
-86 66 106 85 87
-87 88 67 107 86
-88 89 68 108 87
-89 88 90 69 109
-90 110 89 91 70
-91 111 90 92 71
-92 112 91 93 72
-93 113 92 94 73
-94 114 93 95 74
-95 115 94 96 75
-96 116 95 97 76
-97 77 117 96 98
-98 99 78 118 97
-99 100 79 119 98
-100 99 101 80 120
-101 121 100 102 81
-102 122 101 103 82
-103 123 102 104 83
-104 124 103 105 84
-105 125 104 106 85
-106 126 105 107 86
-107 127 106 108 87
-108 88 128 107 109
-109 110 89 129 108
-110 111 90 130 109
-111 110 112 91 131
-112 132 111 113 92
-113 133 112 114 93
-114 1 113 115 94
-115 2 114 116 95
-116 3 115 117 96
-117 4 116 118 97
-118 5 117 119 98
-119 99 6 118 120
-120 121 100 7 119
-121 122 101 8 120
-122 121 123 102 9
-123 122 124 103 10
-124 11 123 125 104
-125 12 124 126 105
-126 13 125 127 106
-127 14 126 128 107
-128 15 127 129 108
-129 16 128 130 109
-130 110 17 129 131
-131 132 111 18 130
-132 133 112 19 131
-133 132 1 113 20
0