[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 134, 1 ] =
W(67,2).
(I) Following is a form readable by MAGMA:
g:=Graph<134|{ {2, 3}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124,
125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113},
{110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98,
99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82,
83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66,
67}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {24,
25}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},
{20, 21}, {22, 23}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51},
{52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {1, 2},
{133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109,
110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82},
{77, 78}, {73, 74}, {69, 70}, {37, 38}, {33, 34}, {29, 30}, {25, 26}, {5, 6},
{9, 10}, {13, 14}, {17, 18}, {21, 22}, {41, 42}, {45, 46}, {49, 50}, {53, 54},
{57, 58}, {61, 62}, {65, 66}, {3, 4}, {131, 132}, {123, 124}, {115, 116}, {107,
108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {35, 36}, {27, 28},
{11, 12}, {19, 20}, {43, 44}, {51, 52}, {59, 60}, {7, 8}, {119, 120}, {103,
104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {15, 16}, {111, 112},
{79, 80}, {47, 48}, {31, 32}, {95, 96}, {1, 67}, {37, 103}, {36, 102}, {33, 99},
{32, 98}, {29, 95}, {28, 94}, {25, 91}, {24, 90}, {4, 70}, {5, 71}, {8, 74}, {9,
75}, {12, 78}, {13, 79}, {16, 82}, {17, 83}, {20, 86}, {21, 87}, {40, 106}, {41,
107}, {44, 110}, {45, 111}, {48, 114}, {49, 115}, {52, 118}, {53, 119}, {56,
122}, {57, 123}, {60, 126}, {61, 127}, {1, 69}, {35, 103}, {34, 102}, {33, 101},
{32, 100}, {27, 95}, {26, 94}, {25, 93}, {24, 92}, {2, 70}, {3, 71}, {8, 76},
{9, 77}, {10, 78}, {11, 79}, {16, 84}, {17, 85}, {18, 86}, {19, 87}, {40, 108},
{41, 109}, {42, 110}, {43, 111}, {48, 116}, {49, 117}, {50, 118}, {51, 119},
{56, 124}, {57, 125}, {58, 126}, {59, 127}, {2, 68}, {35, 101}, {34, 100}, {27,
93}, {26, 92}, {3, 69}, {10, 76}, {11, 77}, {18, 84}, {19, 85}, {42, 108}, {43,
109}, {50, 116}, {51, 117}, {58, 124}, {59, 125}, {4, 72}, {37, 105}, {36, 104},
{23, 91}, {5, 73}, {6, 74}, {7, 75}, {20, 88}, {21, 89}, {22, 90}, {38, 106},
{39, 107}, {52, 120}, {53, 121}, {54, 122}, {55, 123}, {6, 72}, {38, 104}, {23,
89}, {7, 73}, {22, 88}, {39, 105}, {54, 120}, {55, 121}, {12, 80}, {13, 81},
{14, 82}, {15, 83}, {44, 112}, {45, 113}, {46, 114}, {47, 115}, {14, 80}, {15,
81}, {46, 112}, {47, 113}, {28, 96}, {31, 99}, {30, 98}, {29, 97}, {30, 96},
{31, 97}, {63, 64}, {1, 134}, {60, 128}, {61, 129}, {62, 130}, {63, 131}, {62,
128}, {63, 129}, {64, 130}, {68, 134}, {65, 131}, {64, 132}, {66, 134}, {65,
133}, {66, 132}, {67, 133}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (10, 77) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (53, 120)
c: (2, 67)(3, 66)(4, 65)(5, 64)(6, 63)(7, 62)(8, 61)(9, 60)(10, 59)(11, 58)(12,
57)(13, 56)(14, 55)(15, 54)(16, 53)(17, 52)(18, 51)(19, 50)(20, 49)(21, 48)(22,
47)(23, 46)(24, 45)(25, 44)(26, 43)(27, 42)(28, 41)(29, 40)(30, 39)(31, 38)(32,
37)(33, 36)(34, 35)(69, 134)(70, 133)(71, 132)(72, 131)(73, 130)(74, 129)(75,
128)(76, 127)(77, 126)(78, 125)(79, 124)(80, 123)(81, 122)(82, 121)(83, 120)(84,
119)(85, 118)(86, 117)(87, 116)(88, 115)(89, 114)(90, 113)(91, 112)(92, 111)(93,
110)(94, 109)(95, 108)(96, 107)(97, 106)(98, 105)(99, 104)(100, 103)(101,
102)
d: (8, 75)
e: (59, 126)
f: (29, 96)
g: (5, 72)
h: (39, 106)
m: (55, 122)
n1: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67)(68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134)
a1: (3, 70)
b1: (62, 129)
c1: (50, 117)
d1: (6, 73)
e1: (40, 107)
f1: (63, 130)
g1: (9, 76)
h1: (38, 105)
m1: (49, 116)
n2: (43, 110)
a2: (58, 125)
b2: (7, 74)
c2: (54, 121)
d2: (64, 131)
e2: (26, 93)
f2: (27, 94)
g2: (16, 83)
h2: (15, 82)
m2: (25, 92)
n3: (31, 98)
a3: (11, 78)
b3: (24, 91)
c3: (56, 123)
d3: (57, 124)
e3: (23, 90)
f3: (18, 85)
g3: (66, 133)
h3: (46, 113)
m3: (45, 112)
n4: (35, 102)
a4: (47, 114)
b4: (4, 71)
c4: (30, 97)
d4: (37, 104)
e4: (19, 86)
f4: (65, 132)
g4: (42, 109)
h4: (48, 115)
m4: (52, 119)
n5: (34, 101)
a5: (61, 128)
b5: (12, 79)
c5: (44, 111)
d5: (21, 88)
e5: (22, 89)
f5: (20, 87)
g5: (13, 80)
h5: (51, 118)
m5: (14, 81)
n6: (2, 69)
a6: (41, 108)
b6: (36, 103)
c6: (60, 127)
d6: (67, 134)
e6: (28, 95)
f6: (32, 99)
g6: (17, 84)
C4[ 134, 1 ]
134
-1 67 2 134 69
-2 1 68 3 70
-3 2 69 4 71
-4 3 70 5 72
-5 4 71 6 73
-6 5 72 7 74
-7 6 73 8 75
-8 7 74 9 76
-9 77 8 75 10
-10 11 78 9 76
-11 77 12 79 10
-12 11 78 13 80
-13 12 79 14 81
-14 13 80 15 82
-15 14 81 16 83
-16 15 82 17 84
-17 16 83 18 85
-18 17 84 19 86
-19 18 85 20 87
-20 88 19 86 21
-21 22 89 20 87
-22 88 23 90 21
-23 22 89 24 91
-24 23 90 25 92
-25 24 91 26 93
-26 25 92 27 94
-27 26 93 28 95
-28 27 94 29 96
-29 28 95 30 97
-30 29 96 31 98
-31 99 30 97 32
-32 33 100 31 98
-33 99 34 101 32
-34 33 100 35 102
-35 34 101 36 103
-36 35 102 37 104
-37 36 103 38 105
-38 37 104 39 106
-39 38 105 40 107
-40 39 106 41 108
-41 40 107 42 109
-42 110 41 108 43
-43 44 111 42 109
-44 110 45 112 43
-45 44 111 46 113
-46 45 112 47 114
-47 46 113 48 115
-48 47 114 49 116
-49 48 115 50 117
-50 49 116 51 118
-51 50 117 52 119
-52 51 118 53 120
-53 121 52 119 54
-54 55 122 53 120
-55 121 56 123 54
-56 55 122 57 124
-57 56 123 58 125
-58 57 124 59 126
-59 58 125 60 127
-60 59 126 61 128
-61 60 127 62 129
-62 61 128 63 130
-63 62 129 64 131
-64 132 63 130 65
-65 66 133 64 131
-66 132 67 134 65
-67 66 1 133 68
-68 67 2 134 69
-69 1 68 3 70
-70 2 69 4 71
-71 3 70 5 72
-72 4 71 6 73
-73 5 72 7 74
-74 6 73 8 75
-75 7 74 9 76
-76 77 8 75 10
-77 11 78 9 76
-78 77 12 79 10
-79 11 78 13 80
-80 12 79 14 81
-81 13 80 15 82
-82 14 81 16 83
-83 15 82 17 84
-84 16 83 18 85
-85 17 84 19 86
-86 18 85 20 87
-87 88 19 86 21
-88 22 89 20 87
-89 88 23 90 21
-90 22 89 24 91
-91 23 90 25 92
-92 24 91 26 93
-93 25 92 27 94
-94 26 93 28 95
-95 27 94 29 96
-96 28 95 30 97
-97 29 96 31 98
-98 99 30 97 32
-99 33 100 31 98
-100 99 34 101 32
-101 33 100 35 102
-102 34 101 36 103
-103 35 102 37 104
-104 36 103 38 105
-105 37 104 39 106
-106 38 105 40 107
-107 39 106 41 108
-108 40 107 42 109
-109 110 41 108 43
-110 44 111 42 109
-111 110 45 112 43
-112 44 111 46 113
-113 45 112 47 114
-114 46 113 48 115
-115 47 114 49 116
-116 48 115 50 117
-117 49 116 51 118
-118 50 117 52 119
-119 51 118 53 120
-120 121 52 119 54
-121 55 122 53 120
-122 121 56 123 54
-123 55 122 57 124
-124 56 123 58 125
-125 57 124 59 126
-126 58 125 60 127
-127 59 126 61 128
-128 60 127 62 129
-129 61 128 63 130
-130 62 129 64 131
-131 132 63 130 65
-132 66 133 64 131
-133 132 67 134 65
-134 66 1 133 68
0