C4graphGraph forms for C4 [ 135, 1 ] = C_135(1,26)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 135, 1 ] = C_135(1,26).

(I) Following is a form readable by MAGMA:

g:=Graph<135|{ {2, 3}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {1, 2}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {3, 4}, {131, 132}, {123, 124}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {7, 8}, {119, 120}, {103, 104}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {1, 27}, {101, 127}, {100, 126}, {97, 123}, {96, 122}, {37, 63}, {36, 62}, {33, 59}, {32, 58}, {4, 30}, {5, 31}, {64, 90}, {65, 91}, {68, 94}, {69, 95}, {2, 28}, {99, 125}, {98, 124}, {35, 61}, {34, 60}, {3, 29}, {66, 92}, {67, 93}, {15, 16}, {111, 112}, {47, 48}, {79, 80}, {6, 32}, {95, 121}, {94, 120}, {31, 57}, {30, 56}, {7, 33}, {14, 40}, {15, 41}, {22, 48}, {23, 49}, {70, 96}, {71, 97}, {78, 104}, {79, 105}, {86, 112}, {87, 113}, {8, 34}, {93, 119}, {92, 118}, {29, 55}, {28, 54}, {9, 35}, {12, 38}, {13, 39}, {24, 50}, {25, 51}, {72, 98}, {73, 99}, {76, 102}, {77, 103}, {88, 114}, {89, 115}, {10, 36}, {91, 117}, {90, 116}, {27, 53}, {11, 37}, {26, 52}, {74, 100}, {75, 101}, {16, 42}, {17, 43}, {20, 46}, {21, 47}, {80, 106}, {81, 107}, {84, 110}, {85, 111}, {18, 44}, {19, 45}, {82, 108}, {83, 109}, {31, 32}, {95, 96}, {38, 64}, {47, 73}, {46, 72}, {39, 65}, {54, 80}, {55, 81}, {62, 88}, {63, 89}, {40, 66}, {45, 71}, {44, 70}, {41, 67}, {56, 82}, {57, 83}, {60, 86}, {61, 87}, {2, 111}, {16, 125}, {18, 127}, {42, 68}, {43, 69}, {58, 84}, {59, 85}, {1, 110}, {17, 126}, {3, 112}, {7, 116}, {11, 120}, {15, 124}, {4, 113}, {6, 115}, {12, 121}, {14, 123}, {5, 114}, {13, 122}, {48, 74}, {49, 75}, {52, 78}, {53, 79}, {8, 117}, {10, 119}, {50, 76}, {51, 77}, {9, 118}, {63, 64}, {1, 135}, {19, 128}, {23, 132}, {20, 129}, {22, 131}, {21, 130}, {24, 133}, {26, 135}, {25, 134}, {102, 128}, {103, 129}, {104, 130}, {109, 135}, {108, 134}, {105, 131}, {106, 132}, {107, 133}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 27)(3, 53)(4, 79)(5, 105)(6, 131)(7, 22)(8, 48)(9, 74)(10, 100)(11, 126)(12, 17)(13, 43)(14, 69)(15, 95)(16, 121)(18, 38)(19, 64)(20, 90)(21, 116)(23, 33)(24, 59)(25, 85)(26, 111)(29, 54)(30, 80)(31, 106)(32, 132)(34, 49)(35, 75)(36, 101)(37, 127)(39, 44)(40, 70)(41, 96)(42, 122)(45, 65)(46, 91)(47, 117)(50, 60)(51, 86)(52, 112)(56, 81)(57, 107)(58, 133)(61, 76)(62, 102)(63, 128)(66, 71)(67, 97)(68, 123)(72, 92)(73, 118)(77, 87)(78, 113)(83, 108)(84, 134)(88, 103)(89, 129)(93, 98)(94, 124)(99, 119)(104, 114)(110, 135)(115, 130)(120, 125)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135)
c: (2, 110)(3, 84)(4, 58)(5, 32)(7, 115)(8, 89)(9, 63)(10, 37)(12, 120)(13, 94)(14, 68)(15, 42)(17, 125)(18, 99)(19, 73)(20, 47)(22, 130)(23, 104)(24, 78)(25, 52)(27, 135)(28, 109)(29, 83)(30, 57)(33, 114)(34, 88)(35, 62)(38, 119)(39, 93)(40, 67)(43, 124)(44, 98)(45, 72)(48, 129)(49, 103)(50, 77)(53, 134)(54, 108)(55, 82)(59, 113)(60, 87)(64, 118)(65, 92)(69, 123)(70, 97)(74, 128)(75, 102)(79, 133)(80, 107)(85, 112)(90, 117)(95, 122)(100, 127)(105, 132)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 135, 1 ]
135
-1 110 2 135 27
-2 1 111 3 28
-3 2 112 4 29
-4 3 113 5 30
-5 4 114 6 31
-6 5 115 7 32
-7 33 6 116 8
-8 34 7 117 9
-9 35 8 118 10
-10 11 36 9 119
-11 12 37 10 120
-12 11 121 13 38
-13 12 122 14 39
-14 13 123 15 40
-15 14 124 16 41
-16 15 125 17 42
-17 16 126 18 43
-18 44 17 127 19
-19 45 18 128 20
-20 46 19 129 21
-21 22 47 20 130
-22 23 48 21 131
-23 22 132 24 49
-24 23 133 25 50
-25 24 134 26 51
-26 25 135 27 52
-27 1 26 28 53
-28 2 27 29 54
-29 55 3 28 30
-30 56 4 29 31
-31 57 5 30 32
-32 33 58 6 31
-33 34 59 7 32
-34 33 35 60 8
-35 34 36 61 9
-36 35 37 62 10
-37 11 36 38 63
-38 12 37 39 64
-39 13 38 40 65
-40 66 14 39 41
-41 67 15 40 42
-42 68 16 41 43
-43 44 69 17 42
-44 45 70 18 43
-45 44 46 71 19
-46 45 47 72 20
-47 46 48 73 21
-48 22 47 49 74
-49 23 48 50 75
-50 24 49 51 76
-51 77 25 50 52
-52 78 26 51 53
-53 79 27 52 54
-54 55 80 28 53
-55 56 81 29 54
-56 55 57 82 30
-57 56 58 83 31
-58 57 59 84 32
-59 33 58 60 85
-60 34 59 61 86
-61 35 60 62 87
-62 88 36 61 63
-63 89 37 62 64
-64 90 38 63 65
-65 66 91 39 64
-66 67 92 40 65
-67 66 68 93 41
-68 67 69 94 42
-69 68 70 95 43
-70 44 69 71 96
-71 45 70 72 97
-72 46 71 73 98
-73 99 47 72 74
-74 100 48 73 75
-75 101 49 74 76
-76 77 102 50 75
-77 78 103 51 76
-78 77 79 104 52
-79 78 80 105 53
-80 79 81 106 54
-81 55 80 82 107
-82 56 81 83 108
-83 57 82 84 109
-84 110 58 83 85
-85 111 59 84 86
-86 112 60 85 87
-87 88 113 61 86
-88 89 114 62 87
-89 88 90 115 63
-90 89 91 116 64
-91 90 92 117 65
-92 66 91 93 118
-93 67 92 94 119
-94 68 93 95 120
-95 121 69 94 96
-96 122 70 95 97
-97 123 71 96 98
-98 99 124 72 97
-99 100 125 73 98
-100 99 101 126 74
-101 100 102 127 75
-102 101 103 128 76
-103 77 102 104 129
-104 78 103 105 130
-105 79 104 106 131
-106 132 80 105 107
-107 133 81 106 108
-108 134 82 107 109
-109 110 135 83 108
-110 1 111 84 109
-111 110 2 112 85
-112 111 3 113 86
-113 112 4 114 87
-114 88 113 5 115
-115 89 114 6 116
-116 90 115 7 117
-117 91 116 8 118
-118 92 117 9 119
-119 93 118 10 120
-120 11 121 94 119
-121 12 122 95 120
-122 121 13 123 96
-123 122 14 124 97
-124 123 15 125 98
-125 99 124 16 126
-126 100 125 17 127
-127 101 126 18 128
-128 102 127 19 129
-129 103 128 20 130
-130 104 129 21 131
-131 22 132 105 130
-132 23 133 106 131
-133 132 24 134 107
-134 133 25 135 108
-135 1 134 26 109
0

**************