[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 135, 3 ] =
{4,4}_<12,3>.
(I) Following is a form readable by MAGMA:
g:=Graph<135|{ {2, 3}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126,
127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115},
{112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100,
101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {88, 89}, {46, 47}, {44, 45}, {42,
43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {4, 5}, {6, 7},
{8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23},
{24, 25}, {26, 27}, {28, 29}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57},
{58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73},
{74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {1, 2},
{133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109,
110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {41, 42}, {37, 38},
{33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30},
{49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78},
{81, 82}, {85, 86}, {3, 4}, {131, 132}, {123, 124}, {115, 116}, {107, 108}, {99,
100}, {91, 92}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {51, 52}, {59,
60}, {67, 68}, {75, 76}, {83, 84}, {7, 8}, {119, 120}, {103, 104}, {87, 88},
{39, 40}, {23, 24}, {55, 56}, {71, 72}, {15, 16}, {111, 112}, {47, 48}, {79,
80}, {1, 45}, {2, 47}, {16, 61}, {18, 63}, {64, 109}, {66, 111}, {80, 125}, {82,
127}, {1, 46}, {17, 62}, {65, 110}, {81, 126}, {3, 48}, {7, 52}, {11, 56}, {15,
60}, {67, 112}, {71, 116}, {75, 120}, {79, 124}, {4, 49}, {6, 51}, {12, 57},
{14, 59}, {68, 113}, {70, 115}, {76, 121}, {78, 123}, {5, 50}, {13, 58}, {69,
114}, {77, 122}, {8, 53}, {10, 55}, {72, 117}, {74, 119}, {9, 54}, {95, 96},
{31, 32}, {73, 118}, {16, 94}, {33, 111}, {32, 110}, {17, 95}, {14, 92}, {43,
121}, {42, 120}, {39, 117}, {38, 116}, {35, 113}, {34, 112}, {15, 93}, {19, 64},
{31, 76}, {23, 68}, {27, 72}, {51, 96}, {55, 100}, {59, 104}, {63, 108}, {20,
65}, {30, 75}, {22, 67}, {28, 73}, {52, 97}, {54, 99}, {60, 105}, {62, 107},
{13, 91}, {45, 123}, {44, 122}, {37, 115}, {36, 114}, {21, 66}, {29, 74}, {53,
98}, {61, 106}, {24, 69}, {26, 71}, {56, 101}, {58, 103}, {40, 118}, {41, 119},
{25, 70}, {57, 102}, {32, 77}, {34, 79}, {48, 93}, {50, 95}, {33, 78}, {49, 94},
{18, 96}, {31, 109}, {30, 108}, {19, 97}, {22, 100}, {23, 101}, {26, 104}, {27,
105}, {35, 80}, {43, 88}, {39, 84}, {47, 92}, {46, 90}, {36, 81}, {44, 89}, {38,
83}, {46, 91}, {20, 98}, {29, 107}, {21, 99}, {28, 106}, {37, 82}, {45, 90}, {4,
127}, {1, 124}, {42, 87}, {40, 85}, {3, 126}, {24, 102}, {25, 103}, {2, 125},
{41, 86}, {63, 64}, {5, 128}, {7, 130}, {6, 129}, {8, 131}, {12, 135}, {9, 132},
{11, 134}, {10, 133}, {83, 128}, {87, 132}, {84, 129}, {86, 131}, {85, 130},
{91, 135}, {88, 133}, {90, 135}, {89, 134}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 124)(3, 79)(4, 34)(5, 112)(6, 67)(7, 22)(8, 100)(9, 55)(11, 133)(12,
88)(13, 43)(14, 121)(15, 76)(16, 31)(17, 109)(18, 64)(20, 97)(21, 52)(23,
130)(24, 85)(25, 40)(26, 118)(27, 73)(29, 106)(30, 61)(32, 94)(33, 49)(35,
127)(36, 82)(38, 115)(39, 70)(41, 103)(42, 58)(44, 91)(45, 46)(47, 123)(48,
78)(50, 111)(51, 66)(53, 99)(56, 132)(57, 87)(59, 120)(60, 75)(62, 108)(65,
96)(68, 129)(69, 84)(71, 117)(74, 105)(77, 93)(80, 126)(83, 114)(86, 102)(89,
135)(92, 122)(95, 110)(101, 131)(104, 119)(113, 128) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 46)(3, 91)(4, 13)(5, 58)(6, 103)(7, 25)(8, 70)(9, 115)(10, 37)(11,
82)(12, 127)(14, 49)(15, 94)(17, 61)(18, 106)(19, 28)(20, 73)(21, 118)(22,
40)(23, 85)(24, 130)(26, 52)(27, 97)(29, 64)(30, 109)(32, 76)(33, 121)(34,
43)(35, 88)(36, 133)(38, 55)(39, 100)(41, 67)(42, 112)(44, 79)(45, 124)(48,
92)(50, 59)(51, 104)(53, 71)(54, 116)(56, 83)(57, 128)(60, 95)(63, 107)(65,
74)(66, 119)(68, 86)(69, 131)(72, 98)(75, 110)(78, 122)(80, 89)(81, 134)(84,
101)(87, 113)(90, 125)(96, 105)(99, 117)(102, 129)(111, 120)(114, 132)(126,
135)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45)(46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90)(91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135)
C4[ 135, 3 ]
135
-1 45 2 46 124
-2 1 3 47 125
-3 2 4 48 126
-4 3 5 49 127
-5 4 6 50 128
-6 5 7 51 129
-7 6 8 52 130
-8 7 9 53 131
-9 132 8 10 54
-10 11 55 133 9
-11 12 56 134 10
-12 11 13 57 135
-13 12 14 58 91
-14 13 15 59 92
-15 14 16 60 93
-16 15 17 61 94
-17 16 18 62 95
-18 17 19 63 96
-19 18 20 64 97
-20 19 21 65 98
-21 22 66 99 20
-22 23 67 100 21
-23 22 24 68 101
-24 23 25 69 102
-25 24 26 70 103
-26 25 27 71 104
-27 26 28 72 105
-28 27 29 73 106
-29 28 30 74 107
-30 29 31 75 108
-31 30 32 76 109
-32 33 77 110 31
-33 34 78 111 32
-34 33 35 79 112
-35 34 36 80 113
-36 35 37 81 114
-37 36 38 82 115
-38 37 39 83 116
-39 38 40 84 117
-40 39 41 85 118
-41 40 42 86 119
-42 41 43 87 120
-43 44 88 121 42
-44 45 89 122 43
-45 44 1 90 123
-46 1 90 47 91
-47 2 46 48 92
-48 3 47 49 93
-49 4 48 50 94
-50 5 49 51 95
-51 6 50 52 96
-52 7 51 53 97
-53 8 52 54 98
-54 55 99 9 53
-55 56 100 10 54
-56 11 55 57 101
-57 12 56 58 102
-58 13 57 59 103
-59 14 58 60 104
-60 15 59 61 105
-61 16 60 62 106
-62 17 61 63 107
-63 18 62 64 108
-64 19 63 65 109
-65 66 110 20 64
-66 67 111 21 65
-67 22 66 68 112
-68 23 67 69 113
-69 24 68 70 114
-70 25 69 71 115
-71 26 70 72 116
-72 27 71 73 117
-73 28 72 74 118
-74 29 73 75 119
-75 30 74 76 120
-76 77 121 31 75
-77 78 122 32 76
-78 33 77 79 123
-79 34 78 80 124
-80 35 79 81 125
-81 36 80 82 126
-82 37 81 83 127
-83 38 82 84 128
-84 39 83 85 129
-85 40 84 86 130
-86 41 85 87 131
-87 88 132 42 86
-88 89 133 43 87
-89 44 88 90 134
-90 45 89 46 135
-91 13 46 135 92
-92 14 47 91 93
-93 15 48 92 94
-94 16 49 93 95
-95 17 50 94 96
-96 18 51 95 97
-97 19 52 96 98
-98 99 20 53 97
-99 100 21 54 98
-100 22 55 99 101
-101 23 56 100 102
-102 24 57 101 103
-103 25 58 102 104
-104 26 59 103 105
-105 27 60 104 106
-106 28 61 105 107
-107 29 62 106 108
-108 30 63 107 109
-109 110 31 64 108
-110 111 32 65 109
-111 33 66 110 112
-112 34 67 111 113
-113 35 68 112 114
-114 36 69 113 115
-115 37 70 114 116
-116 38 71 115 117
-117 39 72 116 118
-118 40 73 117 119
-119 41 74 118 120
-120 121 42 75 119
-121 122 43 76 120
-122 44 77 121 123
-123 45 78 122 124
-124 1 79 123 125
-125 2 80 124 126
-126 3 81 125 127
-127 4 82 126 128
-128 5 83 127 129
-129 6 84 128 130
-130 7 85 129 131
-131 132 8 86 130
-132 133 9 87 131
-133 88 132 134 10
-134 11 89 133 135
-135 12 90 134 91
0