[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 135, 7 ] =
L(F90).
(I) Following is a form readable by MAGMA:
g:=Graph<135|{ {2, 3}, {134, 135}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58,
59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {4, 5}, {68,
69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84,
85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100,
101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113},
{114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126,
127}, {128, 129}, {130, 131}, {1, 3}, {133, 135}, {45, 47}, {1, 2}, {133, 134},
{1, 5}, {2, 6}, {3, 7}, {16, 20}, {17, 21}, {24, 28}, {25, 29}, {128, 132}, {1,
4}, {129, 132}, {10, 12}, {11, 13}, {130, 132}, {131, 132}, {4, 12}, {5, 13},
{6, 14}, {7, 15}, {32, 40}, {33, 41}, {34, 42}, {35, 43}, {36, 44}, {37, 45},
{2, 8}, {3, 9}, {69, 79}, {22, 26}, {23, 27}, {115, 127}, {114, 127}, {4, 10},
{5, 11}, {6, 8}, {7, 9}, {112, 126}, {113, 126}, {10, 26}, {46, 62}, {11, 27},
{12, 28}, {13, 29}, {14, 30}, {15, 31}, {67, 83}, {71, 86}, {42, 57}, {6, 18},
{7, 19}, {12, 24}, {13, 25}, {75, 95}, {34, 55}, {38, 51}, {74, 95}, {75, 93},
{96, 118}, {107, 125}, {109, 123}, {97, 118}, {106, 125}, {108, 123}, {8, 16},
{37, 61}, {9, 17}, {73, 81}, {65, 88}, {8, 20}, {9, 21}, {10, 22}, {11, 23},
{14, 18}, {15, 19}, {101, 121}, {102, 122}, {77, 80}, {100, 121}, {103, 122},
{43, 53}, {98, 124}, {105, 119}, {32, 63}, {36, 59}, {99, 124}, {104, 119}, {73,
105}, {29, 60}, {72, 105}, {65, 99}, {71, 101}, {27, 56}, {64, 99}, {70, 101},
{85, 113}, {86, 114}, {84, 113}, {87, 114}, {28, 58}, {77, 107}, {82, 116}, {94,
120}, {23, 48}, {76, 107}, {83, 116}, {95, 120}, {14, 38}, {15, 39}, {22, 62},
{69, 109}, {68, 109}, {24, 50}, {66, 104}, {67, 104}, {26, 54}, {25, 52}, {31,
49}, {91, 117}, {93, 115}, {90, 117}, {92, 115}, {16, 32}, {17, 33}, {18, 34},
{19, 35}, {20, 36}, {21, 37}, {89, 111}, {88, 111}, {16, 40}, {17, 41}, {18,
42}, {19, 43}, {20, 44}, {21, 45}, {22, 46}, {30, 38}, {31, 39}, {78, 112}, {80,
110}, {79, 112}, {81, 110}, {30, 80}, {46, 96}, {47, 96}, {58, 106}, {29, 76},
{59, 106}, {31, 78}, {27, 72}, {30, 77}, {53, 97}, {54, 98}, {52, 97}, {55, 98},
{28, 74}, {23, 64}, {60, 100}, {63, 103}, {61, 100}, {62, 103}, {24, 66}, {26,
70}, {25, 68}, {50, 108}, {56, 102}, {51, 108}, {57, 102}, {59, 90}, {41, 75},
{44, 79}, {63, 92}, {35, 71}, {51, 87}, {39, 67}, {55, 82}, {33, 73}, {40, 65},
{61, 84}, {44, 69}, {53, 89}, {57, 85}, {48, 94}, {49, 94}, {33, 81}, {60, 76},
{58, 74}, {56, 72}, {54, 70}, {52, 68}, {50, 66}, {48, 64}, {40, 88}, {34, 82},
{37, 84}, {38, 87}, {43, 89}, {39, 83}, {47, 91}, {41, 93}, {35, 86}, {45, 91},
{32, 92}, {36, 90}, {42, 85}, {49, 78}, {110, 128}, {111, 128}, {119, 133},
{118, 133}, {117, 129}, {116, 129}, {123, 131}, {127, 135}, {122, 131}, {126,
135}, {120, 130}, {124, 134}, {121, 130}, {125, 134} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 3)(6, 7)(8, 9)(11, 13)(14, 15)(16, 21)(17, 20)(18, 19)(23, 29)(25,
27)(30, 31)(32, 45)(33, 44)(34, 35)(36, 41)(37, 40)(38, 39)(42, 43)(46, 62)(47,
63)(48, 76)(49, 77)(50, 66)(51, 67)(52, 56)(53, 57)(54, 70)(55, 71)(58, 74)(59,
75)(60, 64)(61, 65)(68, 72)(69, 73)(78, 80)(79, 81)(82, 86)(83, 87)(84, 88)(85,
89)(90, 93)(91, 92)(94, 107)(95, 106)(96, 103)(97, 102)(98, 101)(99, 100)(104,
108)(105, 109)(110, 112)(111, 113)(114, 116)(115, 117)(118, 122)(119, 123)(120,
125)(121, 124)(126, 128)(127, 129)(130, 134)(131, 133)(132, 135) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(3, 5)(6, 10)(7, 11)(8, 12)(9, 13)(14, 22)(15, 23)(16, 24)(17, 25)(18,
26)(19, 27)(20, 28)(21, 29)(30, 46)(31, 48)(32, 50)(33, 52)(34, 54)(35, 56)(36,
58)(37, 60)(38, 62)(39, 64)(40, 66)(41, 68)(42, 70)(43, 72)(44, 74)(45, 76)(47,
77)(51, 63)(53, 73)(57, 71)(65, 67)(69, 75)(78, 94)(79, 95)(80, 96)(81, 97)(82,
98)(83, 99)(84, 100)(85, 101)(86, 102)(87, 103)(88, 104)(89, 105)(90, 106)(91,
107)(92, 108)(93, 109)(110, 118)(111, 119)(112, 120)(113, 121)(114, 122)(115,
123)(116, 124)(117, 125)(126, 130)(127, 131)(128, 133)(129, 134)(132, 135)
c: (1, 2, 3)(4, 6, 7)(5, 8, 9)(10, 14, 15)(11, 16, 17)(12, 18, 19)(13, 20,
21)(22, 30, 31)(23, 32, 33)(24, 34, 35)(25, 36, 37)(26, 38, 39)(27, 40, 41)(28,
42, 43)(29, 44, 45)(46, 77, 78)(47, 76, 79)(48, 63, 81)(49, 62, 80)(50, 82,
71)(51, 83, 70)(52, 59, 84)(53, 58, 85)(54, 87, 67)(55, 86, 66)(56, 88, 75)(57,
89, 74)(60, 69, 91)(61, 68, 90)(64, 92, 73)(65, 93, 72)(94, 103, 110)(95, 102,
111)(96, 107, 112)(97, 106, 113)(98, 114, 104)(99, 115, 105)(100, 109, 117)(101,
108, 116)(118, 125, 126)(119, 124, 127)(120, 122, 128)(121, 123, 129)(130, 131,
132)(133, 134, 135)
d: (2, 3)(4, 5)(6, 9, 8, 7)(10, 13, 12, 11)(14, 17, 16, 19)(15, 18, 21, 20)(22,
25, 24, 27)(23, 26, 29, 28)(30, 41, 40, 35)(31, 34, 37, 36)(32, 43, 38, 33)(39,
42, 45, 44)(46, 68, 66, 56)(47, 69, 67, 57)(48, 54, 60, 58)(49, 55, 61, 59)(50,
72, 62, 52)(51, 73, 63, 53)(64, 70, 76, 74)(65, 71, 77, 75)(78, 82, 84, 90)(79,
83, 85, 91)(80, 93, 88, 86)(81, 92, 89, 87)(94, 98, 100, 106)(95, 99, 101,
107)(96, 109, 104, 102)(97, 108, 105, 103)(110, 115, 111, 114)(112, 116, 113,
117)(118, 123, 119, 122)(120, 124, 121, 125)(126, 129)(127, 128)(130, 134)(131,
133)(132, 135)
e: (2, 3)(6, 9)(7, 8)(11, 13)(14, 17)(15, 20)(16, 19)(18, 21)(22, 26)(23,
25)(24, 28)(27, 29)(30, 33)(31, 44)(32, 35)(34, 45)(36, 39)(37, 42)(38, 41)(40,
43)(46, 54)(47, 55)(48, 68)(49, 69)(50, 74)(51, 75)(52, 64)(53, 65)(56, 60)(57,
61)(58, 66)(59, 67)(62, 70)(63, 71)(72, 76)(73, 77)(78, 79)(80, 81)(82, 91)(83,
90)(84, 85)(86, 92)(87, 93)(88, 89)(94, 109)(95, 108)(96, 98)(97, 99)(100,
102)(101, 103)(104, 106)(105, 107)(114, 115)(116, 117)(118, 124)(119, 125)(120,
123)(121, 122)(130, 131)(133, 134)
C4[ 135, 7 ]
135
-1 2 3 4 5
-2 1 3 6 8
-3 1 2 7 9
-4 1 12 5 10
-5 11 1 13 4
-6 2 14 18 8
-7 3 15 19 9
-8 2 16 6 20
-9 3 17 7 21
-10 22 12 4 26
-11 23 13 5 27
-12 24 4 28 10
-13 11 25 5 29
-14 38 6 18 30
-15 39 7 19 31
-16 40 8 20 32
-17 33 41 9 21
-18 34 14 6 42
-19 35 15 7 43
-20 44 36 16 8
-21 45 37 17 9
-22 46 26 62 10
-23 11 48 27 64
-24 66 12 28 50
-25 13 68 29 52
-26 22 70 10 54
-27 11 23 56 72
-28 12 24 58 74
-29 13 25 60 76
-30 77 14 80 38
-31 78 15 49 39
-32 92 16 40 63
-33 81 17 73 41
-34 55 82 18 42
-35 71 19 86 43
-36 44 90 59 20
-37 45 61 84 21
-38 14 51 30 87
-39 67 15 83 31
-40 88 16 32 65
-41 33 93 17 75
-42 34 57 18 85
-43 89 35 19 53
-44 79 36 69 20
-45 47 91 37 21
-46 22 47 62 96
-47 45 46 91 96
-48 23 49 94 64
-49 78 48 94 31
-50 66 24 51 108
-51 38 50 108 87
-52 68 25 53 97
-53 89 52 97 43
-54 55 26 70 98
-55 34 82 54 98
-56 57 102 27 72
-57 56 102 85 42
-58 59 28 106 74
-59 90 36 58 106
-60 100 61 29 76
-61 100 37 60 84
-62 22 46 103 63
-63 92 103 62 32
-64 99 23 48 65
-65 88 99 40 64
-66 67 24 104 50
-67 66 104 39 83
-68 25 69 52 109
-69 44 68 79 109
-70 101 26 71 54
-71 35 101 70 86
-72 56 27 105 73
-73 33 81 72 105
-74 58 28 95 75
-75 93 95 41 74
-76 77 60 29 107
-77 80 30 107 76
-78 79 112 49 31
-79 44 78 112 69
-80 77 110 81 30
-81 33 110 80 73
-82 55 34 83 116
-83 67 82 39 116
-84 113 37 61 85
-85 57 113 84 42
-86 35 114 71 87
-87 114 38 51 86
-88 89 111 40 65
-89 88 111 53 43
-90 36 91 59 117
-91 45 90 47 117
-92 93 115 63 32
-93 92 115 41 75
-94 48 49 95 120
-95 94 74 75 120
-96 46 47 118 97
-97 52 96 118 53
-98 55 99 124 54
-99 124 64 65 98
-100 121 101 60 61
-101 121 100 70 71
-102 56 122 57 103
-103 122 102 62 63
-104 66 67 105 119
-105 104 72 73 119
-106 58 59 125 107
-107 77 125 106 76
-108 123 50 51 109
-109 68 123 69 108
-110 111 80 81 128
-111 88 110 89 128
-112 78 79 113 126
-113 112 126 84 85
-114 115 127 86 87
-115 92 114 93 127
-116 82 83 117 129
-117 90 91 116 129
-118 133 96 97 119
-119 133 104 105 118
-120 121 94 95 130
-121 100 101 130 120
-122 123 102 103 131
-123 122 108 109 131
-124 99 134 125 98
-125 134 124 106 107
-126 112 113 135 127
-127 135 114 115 126
-128 110 132 111 129
-129 132 116 117 128
-130 121 132 120 131
-131 132 122 123 130
-132 128 129 130 131
-133 134 135 118 119
-134 133 124 135 125
-135 133 134 126 127
0