C4graphGraph forms for C4 [ 136, 2 ] = C_136(1,33)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 136, 2 ] = C_136(1,33).

(I) Following is a form readable by MAGMA:

g:=Graph<136|{ {2, 3}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {1, 2}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {25, 26}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {3, 4}, {131, 132}, {123, 124}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {43, 44}, {35, 36}, {27, 28}, {11, 12}, {19, 20}, {51, 52}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {7, 8}, {135, 136}, {119, 120}, {103, 104}, {87, 88}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {15, 16}, {111, 112}, {47, 48}, {79, 80}, {2, 35}, {94, 127}, {92, 125}, {90, 123}, {88, 121}, {86, 119}, {84, 117}, {30, 63}, {28, 61}, {26, 59}, {4, 37}, {6, 39}, {8, 41}, {10, 43}, {12, 45}, {14, 47}, {16, 49}, {18, 51}, {20, 53}, {22, 55}, {24, 57}, {64, 97}, {66, 99}, {68, 101}, {70, 103}, {72, 105}, {74, 107}, {76, 109}, {78, 111}, {80, 113}, {82, 115}, {1, 34}, {93, 126}, {89, 122}, {85, 118}, {29, 62}, {25, 58}, {5, 38}, {9, 42}, {13, 46}, {17, 50}, {21, 54}, {65, 98}, {69, 102}, {73, 106}, {77, 110}, {81, 114}, {3, 36}, {91, 124}, {27, 60}, {11, 44}, {19, 52}, {67, 100}, {75, 108}, {83, 116}, {7, 40}, {87, 120}, {23, 56}, {71, 104}, {15, 48}, {95, 96}, {31, 32}, {79, 112}, {31, 64}, {63, 96}, {32, 65}, {44, 77}, {42, 75}, {40, 73}, {38, 71}, {36, 69}, {34, 67}, {46, 79}, {48, 81}, {50, 83}, {52, 85}, {54, 87}, {56, 89}, {58, 91}, {60, 93}, {62, 95}, {33, 66}, {45, 78}, {41, 74}, {37, 70}, {49, 82}, {53, 86}, {57, 90}, {61, 94}, {8, 111}, {43, 76}, {35, 68}, {16, 119}, {24, 127}, {51, 84}, {59, 92}, {1, 104}, {3, 106}, {5, 108}, {7, 110}, {17, 120}, {19, 122}, {21, 124}, {23, 126}, {2, 105}, {6, 109}, {18, 121}, {22, 125}, {4, 107}, {39, 72}, {20, 123}, {55, 88}, {9, 112}, {11, 114}, {13, 116}, {15, 118}, {10, 113}, {14, 117}, {12, 115}, {47, 80}, {63, 64}, {1, 136}, {25, 128}, {31, 134}, {29, 132}, {27, 130}, {26, 129}, {30, 133}, {28, 131}, {32, 135}, {33, 136}, {95, 128}, {96, 129}, {102, 135}, {100, 133}, {98, 131}, {97, 130}, {101, 134}, {99, 132}, {103, 136}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 34)(3, 67)(4, 100)(5, 133)(6, 30)(7, 63)(8, 96)(9, 129)(10, 26)(11, 59)(12, 92)(13, 125)(14, 22)(15, 55)(16, 88)(17, 121)(19, 51)(20, 84)(21, 117)(23, 47)(24, 80)(25, 113)(27, 43)(28, 76)(29, 109)(31, 39)(32, 72)(33, 105)(36, 68)(37, 101)(38, 134)(40, 64)(41, 97)(42, 130)(44, 60)(45, 93)(46, 126)(48, 56)(49, 89)(50, 122)(53, 85)(54, 118)(57, 81)(58, 114)(61, 77)(62, 110)(65, 73)(66, 106)(70, 102)(71, 135)(74, 98)(75, 131)(78, 94)(79, 127)(82, 90)(83, 123)(87, 119)(91, 115)(95, 111)(99, 107)(104, 136)(108, 132)(112, 128)(116, 124)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136)
c: (2, 104)(3, 71)(4, 38)(6, 108)(7, 75)(8, 42)(10, 112)(11, 79)(12, 46)(14, 116)(15, 83)(16, 50)(18, 120)(19, 87)(20, 54)(22, 124)(23, 91)(24, 58)(26, 128)(27, 95)(28, 62)(30, 132)(31, 99)(32, 66)(34, 136)(35, 103)(36, 70)(39, 107)(40, 74)(43, 111)(44, 78)(47, 115)(48, 82)(51, 119)(52, 86)(55, 123)(56, 90)(59, 127)(60, 94)(63, 131)(64, 98)(67, 135)(68, 102)(72, 106)(76, 110)(80, 114)(84, 118)(88, 122)(92, 126)(96, 130)(100, 134)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 136, 2 ]
136
-1 34 2 136 104
-2 1 35 3 105
-3 2 36 4 106
-4 3 37 5 107
-5 4 38 6 108
-6 5 39 7 109
-7 110 6 40 8
-8 111 7 41 9
-9 112 8 42 10
-10 11 113 9 43
-11 44 12 114 10
-12 11 45 13 115
-13 12 46 14 116
-14 13 47 15 117
-15 14 48 16 118
-16 15 49 17 119
-17 16 50 18 120
-18 121 17 51 19
-19 122 18 52 20
-20 123 19 53 21
-21 22 124 20 54
-22 55 23 125 21
-23 22 56 24 126
-24 23 57 25 127
-25 24 58 26 128
-26 25 59 27 129
-27 26 60 28 130
-28 27 61 29 131
-29 132 28 62 30
-30 133 29 63 31
-31 134 30 64 32
-32 33 135 31 65
-33 66 34 136 32
-34 33 1 67 35
-35 34 2 68 36
-36 35 3 69 37
-37 36 4 70 38
-38 37 5 71 39
-39 38 6 72 40
-40 39 7 73 41
-41 40 8 74 42
-42 41 9 75 43
-43 44 42 10 76
-44 11 77 45 43
-45 44 12 78 46
-46 45 13 79 47
-47 46 14 80 48
-48 47 15 81 49
-49 48 16 82 50
-50 49 17 83 51
-51 50 18 84 52
-52 51 19 85 53
-53 52 20 86 54
-54 55 53 21 87
-55 22 88 56 54
-56 55 23 89 57
-57 56 24 90 58
-58 57 25 91 59
-59 58 26 92 60
-60 59 27 93 61
-61 60 28 94 62
-62 61 29 95 63
-63 62 30 96 64
-64 63 31 97 65
-65 66 64 32 98
-66 33 99 67 65
-67 66 34 100 68
-68 67 35 101 69
-69 68 36 102 70
-70 69 37 103 71
-71 70 38 104 72
-72 71 39 105 73
-73 72 40 106 74
-74 73 41 107 75
-75 74 42 108 76
-76 77 75 43 109
-77 44 110 78 76
-78 77 45 111 79
-79 78 46 112 80
-80 79 47 113 81
-81 80 48 114 82
-82 81 49 115 83
-83 82 50 116 84
-84 83 51 117 85
-85 84 52 118 86
-86 85 53 119 87
-87 88 86 54 120
-88 55 121 89 87
-89 88 56 122 90
-90 89 57 123 91
-91 90 58 124 92
-92 91 59 125 93
-93 92 60 126 94
-94 93 61 127 95
-95 94 62 128 96
-96 95 63 129 97
-97 96 64 130 98
-98 99 97 65 131
-99 66 132 100 98
-100 99 67 133 101
-101 100 68 134 102
-102 101 69 135 103
-103 102 70 136 104
-104 1 103 71 105
-105 2 104 72 106
-106 3 105 73 107
-107 4 106 74 108
-108 5 107 75 109
-109 110 6 108 76
-110 77 111 7 109
-111 110 78 112 8
-112 111 79 113 9
-113 112 80 114 10
-114 11 113 81 115
-115 12 114 82 116
-116 13 115 83 117
-117 14 116 84 118
-118 15 117 85 119
-119 16 118 86 120
-120 121 17 119 87
-121 88 122 18 120
-122 121 89 123 19
-123 122 90 124 20
-124 123 91 125 21
-125 22 124 92 126
-126 23 125 93 127
-127 24 126 94 128
-128 25 127 95 129
-129 26 128 96 130
-130 27 129 97 131
-131 132 28 130 98
-132 99 133 29 131
-133 132 100 134 30
-134 133 101 135 31
-135 134 102 136 32
-136 33 1 135 103
0

**************