[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 138, 2 ] =
C_138(1,47).
(I) Following is a form readable by MAGMA:
g:=Graph<138|{ {2, 3}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128,
129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117},
{114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102,
103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89},
{86, 87}, {84, 85}, {82, 83}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37},
{34, 35}, {32, 33}, {30, 31}, {28, 29}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12,
13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {46,
47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62,
63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78,
79}, {80, 81}, {1, 2}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121,
122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93,
94}, {89, 90}, {85, 86}, {81, 82}, {41, 42}, {37, 38}, {33, 34}, {29, 30}, {5,
6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {45, 46}, {49, 50}, {53,
54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {3, 4}, {131,
132}, {123, 124}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {43,
44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {51, 52}, {59, 60}, {67, 68}, {75,
76}, {7, 8}, {135, 136}, {119, 120}, {103, 104}, {87, 88}, {39, 40}, {23, 24},
{55, 56}, {71, 72}, {15, 16}, {111, 112}, {47, 48}, {79, 80}, {16, 63}, {64,
111}, {80, 127}, {1, 48}, {3, 50}, {5, 52}, {7, 54}, {9, 56}, {11, 58}, {13,
60}, {15, 62}, {65, 112}, {67, 114}, {69, 116}, {71, 118}, {73, 120}, {75, 122},
{77, 124}, {79, 126}, {2, 49}, {6, 53}, {10, 57}, {14, 61}, {66, 113}, {70,
117}, {74, 121}, {78, 125}, {4, 51}, {12, 59}, {68, 115}, {76, 123}, {8, 55},
{95, 96}, {31, 32}, {72, 119}, {17, 64}, {31, 78}, {29, 76}, {27, 74}, {19, 66},
{21, 68}, {23, 70}, {25, 72}, {49, 96}, {51, 98}, {53, 100}, {55, 102}, {57,
104}, {59, 106}, {61, 108}, {63, 110}, {18, 65}, {30, 77}, {22, 69}, {26, 73},
{50, 97}, {54, 101}, {58, 105}, {62, 109}, {20, 67}, {28, 75}, {52, 99}, {60,
107}, {4, 95}, {36, 127}, {32, 123}, {1, 92}, {35, 126}, {33, 124}, {3, 94}, {2,
93}, {34, 125}, {24, 71}, {56, 103}, {5, 96}, {31, 122}, {29, 120}, {7, 98},
{13, 104}, {15, 106}, {21, 112}, {23, 114}, {6, 97}, {30, 121}, {14, 105}, {22,
113}, {8, 99}, {28, 119}, {12, 103}, {24, 115}, {9, 100}, {27, 118}, {11, 102},
{25, 116}, {10, 101}, {32, 79}, {26, 117}, {48, 95}, {33, 80}, {43, 90}, {41,
88}, {39, 86}, {37, 84}, {35, 82}, {45, 92}, {47, 94}, {34, 81}, {42, 89}, {38,
85}, {46, 93}, {36, 83}, {44, 91}, {16, 107}, {20, 111}, {17, 108}, {19, 110},
{18, 109}, {40, 87}, {63, 64}, {1, 138}, {37, 128}, {39, 130}, {45, 136}, {47,
138}, {38, 129}, {46, 137}, {40, 131}, {44, 135}, {41, 132}, {43, 134}, {42,
133}, {81, 128}, {91, 138}, {89, 136}, {87, 134}, {85, 132}, {83, 130}, {82,
129}, {90, 137}, {86, 133}, {84, 131}, {88, 135}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 92)(3, 45)(4, 136)(5, 89)(6, 42)(7, 133)(8, 86)(9, 39)(10, 130)(11,
83)(12, 36)(13, 127)(14, 80)(15, 33)(16, 124)(17, 77)(18, 30)(19, 121)(20,
74)(21, 27)(22, 118)(23, 71)(25, 115)(26, 68)(28, 112)(29, 65)(31, 109)(32,
62)(34, 106)(35, 59)(37, 103)(38, 56)(40, 100)(41, 53)(43, 97)(44, 50)(46,
94)(48, 138)(49, 91)(51, 135)(52, 88)(54, 132)(55, 85)(57, 129)(58, 82)(60,
126)(61, 79)(63, 123)(64, 76)(66, 120)(67, 73)(69, 117)(72, 114)(75, 111)(78,
108)(81, 105)(84, 102)(87, 99)(90, 96)(95, 137)(98, 134)(101, 131)(104,
128)(107, 125)(110, 122)(113, 119) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138)
c: (2, 48)(3, 95)(5, 51)(6, 98)(8, 54)(9, 101)(11, 57)(12, 104)(14, 60)(15,
107)(17, 63)(18, 110)(20, 66)(21, 113)(23, 69)(24, 116)(26, 72)(27, 119)(29,
75)(30, 122)(32, 78)(33, 125)(35, 81)(36, 128)(38, 84)(39, 131)(41, 87)(42,
134)(44, 90)(45, 137)(47, 93)(50, 96)(53, 99)(56, 102)(59, 105)(62, 108)(65,
111)(68, 114)(71, 117)(74, 120)(77, 123)(80, 126)(83, 129)(86, 132)(89, 135)(92,
138)
C4[ 138, 2 ]
138
-1 2 48 92 138
-2 1 3 49 93
-3 2 4 50 94
-4 3 5 51 95
-5 4 6 52 96
-6 5 7 53 97
-7 6 8 54 98
-8 55 99 7 9
-9 56 100 8 10
-10 11 57 101 9
-11 12 58 102 10
-12 11 13 59 103
-13 12 14 60 104
-14 13 15 61 105
-15 14 16 62 106
-16 15 17 63 107
-17 16 18 64 108
-18 17 19 65 109
-19 66 110 18 20
-20 67 111 19 21
-21 22 68 112 20
-22 23 69 113 21
-23 22 24 70 114
-24 23 25 71 115
-25 24 26 72 116
-26 25 27 73 117
-27 26 28 74 118
-28 27 29 75 119
-29 28 30 76 120
-30 77 121 29 31
-31 78 122 30 32
-32 33 79 123 31
-33 34 80 124 32
-34 33 35 81 125
-35 34 36 82 126
-36 35 37 83 127
-37 36 38 84 128
-38 37 39 85 129
-39 38 40 86 130
-40 39 41 87 131
-41 88 132 40 42
-42 89 133 41 43
-43 44 90 134 42
-44 45 91 135 43
-45 44 46 92 136
-46 45 47 93 137
-47 46 48 94 138
-48 1 47 49 95
-49 2 48 50 96
-50 3 49 51 97
-51 4 50 52 98
-52 99 5 51 53
-53 100 6 52 54
-54 55 101 7 53
-55 56 102 8 54
-56 55 57 103 9
-57 56 58 104 10
-58 11 57 59 105
-59 12 58 60 106
-60 13 59 61 107
-61 14 60 62 108
-62 15 61 63 109
-63 110 16 62 64
-64 111 17 63 65
-65 66 112 18 64
-66 67 113 19 65
-67 66 68 114 20
-68 67 69 115 21
-69 22 68 70 116
-70 23 69 71 117
-71 24 70 72 118
-72 25 71 73 119
-73 26 72 74 120
-74 121 27 73 75
-75 122 28 74 76
-76 77 123 29 75
-77 78 124 30 76
-78 77 79 125 31
-79 78 80 126 32
-80 33 79 81 127
-81 34 80 82 128
-82 35 81 83 129
-83 36 82 84 130
-84 37 83 85 131
-85 132 38 84 86
-86 133 39 85 87
-87 88 134 40 86
-88 89 135 41 87
-89 88 90 136 42
-90 89 91 137 43
-91 44 90 92 138
-92 1 45 91 93
-93 2 46 92 94
-94 3 47 93 95
-95 4 48 94 96
-96 5 49 95 97
-97 6 50 96 98
-98 99 7 51 97
-99 100 8 52 98
-100 99 101 9 53
-101 100 102 10 54
-102 11 55 101 103
-103 12 56 102 104
-104 13 57 103 105
-105 14 58 104 106
-106 15 59 105 107
-107 16 60 106 108
-108 17 61 107 109
-109 110 18 62 108
-110 111 19 63 109
-111 110 112 20 64
-112 111 113 21 65
-113 22 66 112 114
-114 23 67 113 115
-115 24 68 114 116
-116 25 69 115 117
-117 26 70 116 118
-118 27 71 117 119
-119 28 72 118 120
-120 121 29 73 119
-121 122 30 74 120
-122 121 123 31 75
-123 122 124 32 76
-124 33 77 123 125
-125 34 78 124 126
-126 35 79 125 127
-127 36 80 126 128
-128 37 81 127 129
-129 38 82 128 130
-130 39 83 129 131
-131 132 40 84 130
-132 133 41 85 131
-133 132 134 42 86
-134 133 135 43 87
-135 44 88 134 136
-136 45 89 135 137
-137 46 90 136 138
-138 1 47 91 137
0