[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 140, 2 ] =
C_140(1,29).
(I) Following is a form readable by MAGMA:
g:=Graph<140|{ {2, 3}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130,
131}, {128, 129}, {126, 127}, {124, 125}, {64, 65}, {62, 63}, {60, 61}, {58,
59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42,
43}, {40, 41}, {38, 39}, {36, 37}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29},
{30, 31}, {32, 33}, {34, 35}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75},
{76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91},
{92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105},
{106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118,
119}, {120, 121}, {122, 123}, {1, 2}, {137, 138}, {133, 134}, {129, 130}, {125,
126}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5,
6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {65,
66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97,
98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {3,
4}, {139, 140}, {131, 132}, {123, 124}, {59, 60}, {51, 52}, {43, 44}, {35, 36},
{11, 12}, {19, 20}, {27, 28}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100},
{107, 108}, {115, 116}, {7, 8}, {135, 136}, {55, 56}, {39, 40}, {23, 24}, {71,
72}, {87, 88}, {103, 104}, {119, 120}, {2, 31}, {64, 93}, {34, 63}, {32, 61},
{66, 95}, {96, 125}, {98, 127}, {1, 30}, {47, 48}, {15, 16}, {33, 62}, {65, 94},
{79, 80}, {97, 126}, {111, 112}, {3, 32}, {7, 36}, {11, 40}, {15, 44}, {19, 48},
{23, 52}, {27, 56}, {31, 60}, {67, 96}, {71, 100}, {75, 104}, {79, 108}, {83,
112}, {87, 116}, {91, 120}, {95, 124}, {4, 33}, {6, 35}, {12, 41}, {14, 43},
{20, 49}, {22, 51}, {28, 57}, {30, 59}, {68, 97}, {70, 99}, {76, 105}, {78,
107}, {84, 113}, {86, 115}, {92, 121}, {94, 123}, {5, 34}, {13, 42}, {21, 50},
{29, 58}, {69, 98}, {77, 106}, {85, 114}, {93, 122}, {8, 37}, {10, 39}, {24,
53}, {26, 55}, {72, 101}, {74, 103}, {88, 117}, {90, 119}, {9, 38}, {25, 54},
{73, 102}, {89, 118}, {16, 45}, {18, 47}, {80, 109}, {82, 111}, {17, 46}, {31,
32}, {81, 110}, {95, 96}, {35, 64}, {63, 92}, {59, 88}, {55, 84}, {51, 80}, {47,
76}, {43, 72}, {39, 68}, {36, 65}, {62, 91}, {60, 89}, {54, 83}, {52, 81}, {46,
75}, {44, 73}, {38, 67}, {37, 66}, {61, 90}, {53, 82}, {45, 74}, {40, 69}, {58,
87}, {56, 85}, {42, 71}, {16, 127}, {57, 86}, {41, 70}, {1, 112}, {3, 114}, {5,
116}, {7, 118}, {9, 120}, {11, 122}, {13, 124}, {15, 126}, {2, 113}, {6, 117},
{10, 121}, {14, 125}, {4, 115}, {12, 123}, {48, 77}, {50, 79}, {8, 119}, {63,
64}, {49, 78}, {1, 140}, {17, 128}, {19, 130}, {21, 132}, {23, 134}, {25, 136},
{27, 138}, {29, 140}, {18, 129}, {22, 133}, {26, 137}, {20, 131}, {28, 139},
{24, 135}, {99, 128}, {103, 132}, {107, 136}, {111, 140}, {100, 129}, {102,
131}, {108, 137}, {110, 139}, {101, 130}, {109, 138}, {104, 133}, {106, 135},
{105, 134}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 112)(3, 83)(4, 54)(5, 25)(6, 136)(7, 107)(8, 78)(9, 49)(10, 20)(11,
131)(12, 102)(13, 73)(14, 44)(16, 126)(17, 97)(18, 68)(19, 39)(21, 121)(22,
92)(23, 63)(24, 34)(26, 116)(27, 87)(28, 58)(30, 140)(31, 111)(32, 82)(33,
53)(35, 135)(36, 106)(37, 77)(38, 48)(40, 130)(41, 101)(42, 72)(45, 125)(46,
96)(47, 67)(50, 120)(51, 91)(52, 62)(55, 115)(56, 86)(59, 139)(60, 110)(61,
81)(64, 134)(65, 105)(66, 76)(69, 129)(70, 100)(74, 124)(75, 95)(79, 119)(80,
90)(84, 114)(88, 138)(89, 109)(93, 133)(94, 104)(98, 128)(103, 123)(108,
118)(117, 137)(122, 132) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 30)(3, 59)(4, 88)(5, 117)(7, 35)(8, 64)(9, 93)(10, 122)(12, 40)(13,
69)(14, 98)(15, 127)(17, 45)(18, 74)(19, 103)(20, 132)(22, 50)(23, 79)(24,
108)(25, 137)(27, 55)(28, 84)(29, 113)(32, 60)(33, 89)(34, 118)(37, 65)(38,
94)(39, 123)(42, 70)(43, 99)(44, 128)(47, 75)(48, 104)(49, 133)(52, 80)(53,
109)(54, 138)(57, 85)(58, 114)(62, 90)(63, 119)(67, 95)(68, 124)(72, 100)(73,
129)(77, 105)(78, 134)(82, 110)(83, 139)(87, 115)(92, 120)(97, 125)(102,
130)(107, 135)(112, 140)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140)
C4[ 140, 2 ]
140
-1 2 112 30 140
-2 1 3 113 31
-3 2 4 114 32
-4 33 3 5 115
-5 34 4 6 116
-6 35 5 7 117
-7 36 6 8 118
-8 37 7 9 119
-9 38 8 10 120
-10 11 121 39 9
-11 12 122 40 10
-12 11 13 123 41
-13 12 14 124 42
-14 13 15 125 43
-15 44 14 16 126
-16 45 15 17 127
-17 46 16 18 128
-18 47 17 19 129
-19 48 18 20 130
-20 49 19 21 131
-21 22 132 50 20
-22 23 133 51 21
-23 22 24 134 52
-24 23 25 135 53
-25 24 26 136 54
-26 55 25 27 137
-27 56 26 28 138
-28 57 27 29 139
-29 58 28 30 140
-30 1 59 29 31
-31 2 60 30 32
-32 33 3 61 31
-33 34 4 62 32
-34 33 35 5 63
-35 34 36 6 64
-36 35 37 7 65
-37 66 36 38 8
-38 67 37 39 9
-39 68 38 40 10
-40 11 69 39 41
-41 12 70 40 42
-42 13 71 41 43
-43 44 14 72 42
-44 45 15 73 43
-45 44 46 16 74
-46 45 47 17 75
-47 46 48 18 76
-48 77 47 49 19
-49 78 48 50 20
-50 79 49 51 21
-51 22 80 50 52
-52 23 81 51 53
-53 24 82 52 54
-54 55 25 83 53
-55 56 26 84 54
-56 55 57 27 85
-57 56 58 28 86
-58 57 59 29 87
-59 88 58 60 30
-60 89 59 61 31
-61 90 60 62 32
-62 33 91 61 63
-63 34 92 62 64
-64 35 93 63 65
-65 66 36 94 64
-66 67 37 95 65
-67 66 68 38 96
-68 67 69 39 97
-69 68 70 40 98
-70 99 69 71 41
-71 100 70 72 42
-72 101 71 73 43
-73 44 102 72 74
-74 45 103 73 75
-75 46 104 74 76
-76 77 47 105 75
-77 78 48 106 76
-78 77 79 49 107
-79 78 80 50 108
-80 79 81 51 109
-81 110 80 82 52
-82 111 81 83 53
-83 112 82 84 54
-84 55 113 83 85
-85 56 114 84 86
-86 57 115 85 87
-87 88 58 116 86
-88 89 59 117 87
-89 88 90 60 118
-90 89 91 61 119
-91 90 92 62 120
-92 121 91 93 63
-93 122 92 94 64
-94 123 93 95 65
-95 66 124 94 96
-96 67 125 95 97
-97 68 126 96 98
-98 99 69 127 97
-99 100 70 128 98
-100 99 101 71 129
-101 100 102 72 130
-102 101 103 73 131
-103 132 102 104 74
-104 133 103 105 75
-105 134 104 106 76
-106 77 135 105 107
-107 78 136 106 108
-108 79 137 107 109
-109 110 80 138 108
-110 111 81 139 109
-111 110 112 82 140
-112 1 111 113 83
-113 2 112 114 84
-114 3 113 115 85
-115 4 114 116 86
-116 5 115 117 87
-117 88 6 116 118
-118 89 7 117 119
-119 90 8 118 120
-120 121 91 9 119
-121 122 92 10 120
-122 11 121 123 93
-123 12 122 124 94
-124 13 123 125 95
-125 14 124 126 96
-126 15 125 127 97
-127 16 126 128 98
-128 99 17 127 129
-129 100 18 128 130
-130 101 19 129 131
-131 132 102 20 130
-132 133 103 21 131
-133 22 132 134 104
-134 23 133 135 105
-135 24 134 136 106
-136 25 135 137 107
-137 26 136 138 108
-138 27 137 139 109
-139 110 28 138 140
-140 1 111 29 139
0