C4graphGraph forms for C4 [ 141, 1 ] = C_141(1,46)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 141, 1 ] = C_141(1,46).

(I) Following is a form readable by MAGMA:

g:=Graph<141|{ {2, 3}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {1, 2}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {3, 4}, {139, 140}, {131, 132}, {123, 124}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {7, 8}, {135, 136}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {47, 48}, {79, 80}, {111, 112}, {1, 47}, {16, 62}, {17, 63}, {64, 110}, {65, 111}, {80, 126}, {81, 127}, {2, 48}, {3, 49}, {6, 52}, {7, 53}, {10, 56}, {11, 57}, {14, 60}, {15, 61}, {66, 112}, {67, 113}, {70, 116}, {71, 117}, {74, 120}, {75, 121}, {78, 124}, {79, 125}, {4, 50}, {5, 51}, {12, 58}, {13, 59}, {68, 114}, {69, 115}, {76, 122}, {77, 123}, {8, 54}, {9, 55}, {72, 118}, {73, 119}, {31, 32}, {95, 96}, {18, 64}, {55, 101}, {54, 100}, {51, 97}, {50, 96}, {19, 65}, {22, 68}, {23, 69}, {26, 72}, {27, 73}, {30, 76}, {31, 77}, {58, 104}, {59, 105}, {62, 108}, {63, 109}, {20, 66}, {53, 99}, {52, 98}, {21, 67}, {28, 74}, {29, 75}, {60, 106}, {61, 107}, {24, 70}, {25, 71}, {56, 102}, {57, 103}, {32, 127}, {1, 96}, {31, 126}, {3, 98}, {5, 100}, {7, 102}, {9, 104}, {11, 106}, {13, 108}, {15, 110}, {17, 112}, {19, 114}, {21, 116}, {23, 118}, {25, 120}, {27, 122}, {29, 124}, {2, 97}, {6, 101}, {10, 105}, {14, 109}, {18, 113}, {22, 117}, {26, 121}, {30, 125}, {4, 99}, {12, 107}, {20, 115}, {28, 123}, {32, 78}, {49, 95}, {48, 94}, {33, 79}, {8, 103}, {24, 119}, {34, 80}, {47, 93}, {46, 92}, {43, 89}, {42, 88}, {39, 85}, {38, 84}, {35, 81}, {36, 82}, {45, 91}, {44, 90}, {37, 83}, {40, 86}, {41, 87}, {16, 111}, {63, 64}, {1, 141}, {33, 128}, {45, 140}, {43, 138}, {41, 136}, {39, 134}, {37, 132}, {35, 130}, {34, 129}, {46, 141}, {42, 137}, {38, 133}, {36, 131}, {44, 139}, {40, 135}, {82, 128}, {83, 129}, {86, 132}, {87, 133}, {90, 136}, {91, 137}, {94, 140}, {95, 141}, {84, 130}, {85, 131}, {92, 138}, {93, 139}, {88, 134}, {89, 135}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 47)(3, 93)(4, 139)(5, 44)(6, 90)(7, 136)(8, 41)(9, 87)(10, 133)(11, 38)(12, 84)(13, 130)(14, 35)(15, 81)(16, 127)(17, 32)(18, 78)(19, 124)(20, 29)(21, 75)(22, 121)(23, 26)(24, 72)(25, 118)(27, 69)(28, 115)(30, 66)(31, 112)(33, 63)(34, 109)(36, 60)(37, 106)(39, 57)(40, 103)(42, 54)(43, 100)(45, 51)(46, 97)(49, 94)(50, 140)(52, 91)(53, 137)(55, 88)(56, 134)(58, 85)(59, 131)(61, 82)(62, 128)(64, 79)(65, 125)(67, 76)(68, 122)(70, 73)(71, 119)(74, 116)(77, 113)(80, 110)(83, 107)(86, 104)(89, 101)(92, 98)(96, 141)(99, 138)(102, 135)(105, 132)(108, 129)(111, 126)(114, 123)(117, 120)
b: (2, 96)(3, 50)(5, 99)(6, 53)(8, 102)(9, 56)(11, 105)(12, 59)(14, 108)(15, 62)(17, 111)(18, 65)(20, 114)(21, 68)(23, 117)(24, 71)(26, 120)(27, 74)(29, 123)(30, 77)(32, 126)(33, 80)(35, 129)(36, 83)(38, 132)(39, 86)(41, 135)(42, 89)(44, 138)(45, 92)(47, 141)(48, 95)(51, 98)(54, 101)(57, 104)(60, 107)(63, 110)(66, 113)(69, 116)(72, 119)(75, 122)(78, 125)(81, 128)(84, 131)(87, 134)(90, 137)(93, 140)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 141, 1 ]
141
-1 2 47 96 141
-2 1 3 48 97
-3 2 4 49 98
-4 99 3 5 50
-5 100 4 6 51
-6 101 5 7 52
-7 102 6 8 53
-8 103 7 9 54
-9 55 104 8 10
-10 11 56 105 9
-11 12 57 106 10
-12 11 13 58 107
-13 12 14 59 108
-14 13 15 60 109
-15 110 14 16 61
-16 111 15 17 62
-17 112 16 18 63
-18 113 17 19 64
-19 114 18 20 65
-20 66 115 19 21
-21 22 67 116 20
-22 23 68 117 21
-23 22 24 69 118
-24 23 25 70 119
-25 24 26 71 120
-26 121 25 27 72
-27 122 26 28 73
-28 123 27 29 74
-29 124 28 30 75
-30 125 29 31 76
-31 77 126 30 32
-32 33 78 127 31
-33 34 79 128 32
-34 33 35 80 129
-35 34 36 81 130
-36 35 37 82 131
-37 132 36 38 83
-38 133 37 39 84
-39 134 38 40 85
-40 135 39 41 86
-41 136 40 42 87
-42 88 137 41 43
-43 44 89 138 42
-44 45 90 139 43
-45 44 46 91 140
-46 45 47 92 141
-47 1 46 48 93
-48 2 47 49 94
-49 3 48 50 95
-50 4 49 51 96
-51 5 50 52 97
-52 6 51 53 98
-53 99 7 52 54
-54 55 100 8 53
-55 56 101 9 54
-56 55 57 102 10
-57 11 56 58 103
-58 12 57 59 104
-59 13 58 60 105
-60 14 59 61 106
-61 15 60 62 107
-62 16 61 63 108
-63 17 62 64 109
-64 110 18 63 65
-65 66 111 19 64
-66 67 112 20 65
-67 66 68 113 21
-68 22 67 69 114
-69 23 68 70 115
-70 24 69 71 116
-71 25 70 72 117
-72 26 71 73 118
-73 27 72 74 119
-74 28 73 75 120
-75 121 29 74 76
-76 77 122 30 75
-77 78 123 31 76
-78 77 79 124 32
-79 33 78 80 125
-80 34 79 81 126
-81 35 80 82 127
-82 36 81 83 128
-83 37 82 84 129
-84 38 83 85 130
-85 39 84 86 131
-86 132 40 85 87
-87 88 133 41 86
-88 89 134 42 87
-89 88 90 135 43
-90 44 89 91 136
-91 45 90 92 137
-92 46 91 93 138
-93 47 92 94 139
-94 48 93 95 140
-95 49 94 96 141
-96 1 50 95 97
-97 2 51 96 98
-98 99 3 52 97
-99 100 4 53 98
-100 99 101 5 54
-101 55 100 102 6
-102 56 101 103 7
-103 57 102 104 8
-104 58 103 105 9
-105 59 104 106 10
-106 11 60 105 107
-107 12 61 106 108
-108 13 62 107 109
-109 110 14 63 108
-110 111 15 64 109
-111 110 112 16 65
-112 66 111 113 17
-113 67 112 114 18
-114 68 113 115 19
-115 69 114 116 20
-116 70 115 117 21
-117 22 71 116 118
-118 23 72 117 119
-119 24 73 118 120
-120 121 25 74 119
-121 122 26 75 120
-122 121 123 27 76
-123 77 122 124 28
-124 78 123 125 29
-125 79 124 126 30
-126 80 125 127 31
-127 81 126 128 32
-128 33 82 127 129
-129 34 83 128 130
-130 35 84 129 131
-131 132 36 85 130
-132 133 37 86 131
-133 132 134 38 87
-134 88 133 135 39
-135 89 134 136 40
-136 90 135 137 41
-137 91 136 138 42
-138 92 137 139 43
-139 44 93 138 140
-140 45 94 139 141
-141 1 46 95 140
0

**************