[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 142, 1 ] =
W(71,2).
(I) Following is a form readable by MAGMA:
g:=Graph<142|{ {2, 3}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132,
133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121},
{118, 119}, {116, 117}, {114, 115}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40,
41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {4, 5}, {6, 7}, {8, 9}, {10, 11},
{12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27},
{28, 29}, {30, 31}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61},
{62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77},
{78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93},
{94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107},
{108, 109}, {110, 111}, {112, 113}, {1, 2}, {141, 142}, {137, 138}, {133, 134},
{129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {49, 50}, {45, 46},
{41, 42}, {37, 38}, {33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22},
{25, 26}, {29, 30}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74},
{77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105,
106}, {109, 110}, {3, 4}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {43,
44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {51, 52}, {59, 60}, {67, 68}, {75,
76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {7, 8}, {135, 136}, {119, 120},
{39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {47,
48}, {79, 80}, {111, 112}, {31, 32}, {95, 96}, {1, 71}, {49, 119}, {48, 118},
{41, 111}, {40, 110}, {33, 103}, {32, 102}, {8, 78}, {9, 79}, {16, 86}, {17,
87}, {24, 94}, {25, 95}, {56, 126}, {57, 127}, {1, 73}, {48, 120}, {39, 111},
{38, 110}, {37, 109}, {36, 108}, {35, 107}, {34, 106}, {33, 105}, {32, 104}, {2,
74}, {3, 75}, {4, 76}, {5, 77}, {6, 78}, {7, 79}, {16, 88}, {17, 89}, {18, 90},
{19, 91}, {20, 92}, {21, 93}, {22, 94}, {23, 95}, {49, 121}, {50, 122}, {51,
123}, {52, 124}, {53, 125}, {54, 126}, {55, 127}, {2, 72}, {39, 109}, {38, 108},
{35, 105}, {34, 104}, {3, 73}, {6, 76}, {7, 77}, {18, 88}, {19, 89}, {22, 92},
{23, 93}, {50, 120}, {51, 121}, {54, 124}, {55, 125}, {4, 74}, {37, 107}, {36,
106}, {5, 75}, {20, 90}, {21, 91}, {52, 122}, {53, 123}, {8, 80}, {47, 119},
{46, 118}, {45, 117}, {44, 116}, {43, 115}, {42, 114}, {41, 113}, {40, 112}, {9,
81}, {10, 82}, {11, 83}, {12, 84}, {13, 85}, {14, 86}, {15, 87}, {10, 80}, {47,
117}, {46, 116}, {43, 113}, {42, 112}, {11, 81}, {14, 84}, {15, 85}, {12, 82},
{45, 115}, {44, 114}, {13, 83}, {24, 96}, {31, 103}, {30, 102}, {25, 97}, {26,
98}, {27, 99}, {28, 100}, {29, 101}, {26, 96}, {31, 101}, {27, 97}, {30, 100},
{28, 98}, {29, 99}, {63, 64}, {1, 142}, {56, 128}, {57, 129}, {58, 130}, {59,
131}, {60, 132}, {61, 133}, {62, 134}, {63, 135}, {58, 128}, {59, 129}, {62,
132}, {63, 133}, {60, 130}, {61, 131}, {64, 134}, {65, 135}, {72, 142}, {64,
136}, {65, 137}, {66, 138}, {67, 139}, {68, 140}, {69, 141}, {70, 142}, {66,
136}, {67, 137}, {70, 140}, {71, 141}, {68, 138}, {69, 139}, {127, 128}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (14, 85) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 73)
c: (65, 136)
d: (63, 134)
e: (16, 87)
f: (67, 138)
g: (10, 81)
h: (41, 112)
m: (38, 109)
n1: (2, 71)(3, 70)(4, 69)(5, 68)(6, 67)(7, 66)(8, 65)(9, 64)(10, 63)(11, 62)(12,
61)(13, 60)(14, 59)(15, 58)(16, 57)(17, 56)(18, 55)(19, 54)(20, 53)(21, 52)(22,
51)(23, 50)(24, 49)(25, 48)(26, 47)(27, 46)(28, 45)(29, 44)(30, 43)(31, 42)(32,
41)(33, 40)(34, 39)(35, 38)(36, 37)(73, 142)(74, 141)(75, 140)(76, 139)(77,
138)(78, 137)(79, 136)(80, 135)(81, 134)(82, 133)(83, 132)(84, 131)(85, 130)(86,
129)(87, 128)(88, 127)(89, 126)(90, 125)(91, 124)(92, 123)(93, 122)(94, 121)(95,
120)(96, 119)(97, 118)(98, 117)(99, 116)(100, 115)(101, 114)(102, 113)(103,
112)(104, 111)(105, 110)(106, 109)(107, 108)
a1: (45, 116)
b1: (57, 128)
c1: (24, 95)
d1: (54, 125)
e1: (51, 122)
f1: (55, 126)
g1: (27, 98)
h1: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71)(72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142)
m1: (19, 90)
n2: (70, 141)
a2: (64, 135)
b2: (68, 139)
c2: (8, 79)
d2: (11, 82)
e2: (50, 121)
f2: (62, 133)
g2: (3, 74)
h2: (17, 88)
m2: (49, 120)
n3: (53, 124)
a3: (34, 105)
b3: (15, 86)
c3: (23, 94)
d3: (13, 84)
e3: (69, 140)
f3: (40, 111)
g3: (18, 89)
h3: (71, 142)
m3: (32, 103)
n4: (39, 110)
a4: (5, 76)
b4: (33, 104)
c4: (47, 118)
d4: (59, 130)
e4: (26, 97)
f4: (46, 117)
g4: (44, 115)
h4: (60, 131)
m4: (22, 93)
n5: (66, 137)
a5: (52, 123)
b5: (31, 102)
c5: (61, 132)
d5: (29, 100)
e5: (25, 96)
f5: (20, 91)
g5: (21, 92)
h5: (4, 75)
m5: (42, 113)
n6: (9, 80)
a6: (12, 83)
b6: (37, 108)
c6: (30, 101)
d6: (36, 107)
e6: (48, 119)
f6: (28, 99)
g6: (6, 77)
h6: (43, 114)
m6: (7, 78)
n7: (56, 127)
a7: (58, 129)
C4[ 142, 1 ]
142
-1 2 71 73 142
-2 1 3 72 74
-3 2 4 73 75
-4 3 5 74 76
-5 77 4 6 75
-6 78 5 7 76
-7 77 79 6 8
-8 78 80 7 9
-9 79 81 8 10
-10 11 80 82 9
-11 12 81 83 10
-12 11 13 82 84
-13 12 14 83 85
-14 13 15 84 86
-15 14 16 85 87
-16 88 15 17 86
-17 89 16 18 87
-18 88 90 17 19
-19 89 91 18 20
-20 90 92 19 21
-21 22 91 93 20
-22 23 92 94 21
-23 22 24 93 95
-24 23 25 94 96
-25 24 26 95 97
-26 25 27 96 98
-27 99 26 28 97
-28 100 27 29 98
-29 99 101 28 30
-30 100 102 29 31
-31 101 103 30 32
-32 33 102 104 31
-33 34 103 105 32
-34 33 35 104 106
-35 34 36 105 107
-36 35 37 106 108
-37 36 38 107 109
-38 110 37 39 108
-39 111 38 40 109
-40 110 112 39 41
-41 111 113 40 42
-42 112 114 41 43
-43 44 113 115 42
-44 45 114 116 43
-45 44 46 115 117
-46 45 47 116 118
-47 46 48 117 119
-48 47 49 118 120
-49 121 48 50 119
-50 122 49 51 120
-51 121 123 50 52
-52 122 124 51 53
-53 123 125 52 54
-54 55 124 126 53
-55 56 125 127 54
-56 55 57 126 128
-57 56 58 127 129
-58 57 59 128 130
-59 58 60 129 131
-60 132 59 61 130
-61 133 60 62 131
-62 132 134 61 63
-63 133 135 62 64
-64 134 136 63 65
-65 66 135 137 64
-66 67 136 138 65
-67 66 68 137 139
-68 67 69 138 140
-69 68 70 139 141
-70 69 71 140 142
-71 1 70 72 141
-72 2 71 73 142
-73 1 3 72 74
-74 2 4 73 75
-75 3 5 74 76
-76 77 4 6 75
-77 78 5 7 76
-78 77 79 6 8
-79 78 80 7 9
-80 79 81 8 10
-81 11 80 82 9
-82 12 81 83 10
-83 11 13 82 84
-84 12 14 83 85
-85 13 15 84 86
-86 14 16 85 87
-87 88 15 17 86
-88 89 16 18 87
-89 88 90 17 19
-90 89 91 18 20
-91 90 92 19 21
-92 22 91 93 20
-93 23 92 94 21
-94 22 24 93 95
-95 23 25 94 96
-96 24 26 95 97
-97 25 27 96 98
-98 99 26 28 97
-99 100 27 29 98
-100 99 101 28 30
-101 100 102 29 31
-102 101 103 30 32
-103 33 102 104 31
-104 34 103 105 32
-105 33 35 104 106
-106 34 36 105 107
-107 35 37 106 108
-108 36 38 107 109
-109 110 37 39 108
-110 111 38 40 109
-111 110 112 39 41
-112 111 113 40 42
-113 112 114 41 43
-114 44 113 115 42
-115 45 114 116 43
-116 44 46 115 117
-117 45 47 116 118
-118 46 48 117 119
-119 47 49 118 120
-120 121 48 50 119
-121 122 49 51 120
-122 121 123 50 52
-123 122 124 51 53
-124 123 125 52 54
-125 55 124 126 53
-126 56 125 127 54
-127 55 57 126 128
-128 56 58 127 129
-129 57 59 128 130
-130 58 60 129 131
-131 132 59 61 130
-132 133 60 62 131
-133 132 134 61 63
-134 133 135 62 64
-135 134 136 63 65
-136 66 135 137 64
-137 67 136 138 65
-138 66 68 137 139
-139 67 69 138 140
-140 68 70 139 141
-141 69 71 140 142
-142 1 70 72 141
0