C4graphGraph forms for C4 [ 144, 3 ] = C_144(1,55)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 144, 3 ] = C_144(1,55).

(I) Following is a form readable by MAGMA:

g:=Graph<144|{ {2, 3}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {1, 2}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {3, 4}, {139, 140}, {131, 132}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7, 8}, {135, 136}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {8, 63}, {64, 119}, {72, 127}, {1, 56}, {3, 58}, {5, 60}, {7, 62}, {65, 120}, {67, 122}, {69, 124}, {71, 126}, {2, 57}, {6, 61}, {66, 121}, {70, 125}, {4, 59}, {31, 32}, {68, 123}, {95, 96}, {9, 64}, {47, 102}, {45, 100}, {43, 98}, {41, 96}, {11, 66}, {13, 68}, {15, 70}, {25, 80}, {27, 82}, {29, 84}, {31, 86}, {57, 112}, {59, 114}, {61, 116}, {63, 118}, {10, 65}, {46, 101}, {42, 97}, {14, 69}, {26, 81}, {30, 85}, {58, 113}, {62, 117}, {12, 67}, {44, 99}, {28, 83}, {60, 115}, {16, 71}, {48, 103}, {24, 79}, {56, 111}, {2, 91}, {53, 108}, {51, 106}, {49, 104}, {38, 127}, {36, 125}, {34, 123}, {4, 93}, {6, 95}, {17, 72}, {19, 74}, {21, 76}, {23, 78}, {32, 121}, {55, 110}, {1, 90}, {54, 109}, {50, 105}, {37, 126}, {33, 122}, {5, 94}, {18, 73}, {22, 77}, {3, 92}, {52, 107}, {35, 124}, {20, 75}, {7, 96}, {15, 104}, {23, 112}, {31, 120}, {8, 97}, {10, 99}, {12, 101}, {14, 103}, {24, 113}, {26, 115}, {28, 117}, {30, 119}, {9, 98}, {13, 102}, {25, 114}, {29, 118}, {11, 100}, {27, 116}, {32, 87}, {40, 95}, {16, 105}, {39, 94}, {37, 92}, {35, 90}, {18, 107}, {20, 109}, {22, 111}, {33, 88}, {17, 106}, {38, 93}, {34, 89}, {21, 110}, {19, 108}, {36, 91}, {63, 64}, {1, 144}, {39, 128}, {47, 136}, {55, 144}, {40, 129}, {46, 135}, {44, 133}, {42, 131}, {41, 130}, {45, 134}, {43, 132}, {48, 137}, {52, 141}, {50, 139}, {54, 143}, {49, 138}, {53, 142}, {51, 140}, {73, 128}, {75, 130}, {77, 132}, {79, 134}, {89, 144}, {74, 129}, {78, 133}, {76, 131}, {80, 135}, {88, 143}, {81, 136}, {83, 138}, {85, 140}, {87, 142}, {82, 137}, {86, 141}, {84, 139}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 90)(3, 35)(4, 124)(5, 69)(6, 14)(7, 103)(8, 48)(9, 137)(10, 82)(11, 27)(12, 116)(13, 61)(15, 95)(16, 40)(17, 129)(18, 74)(20, 108)(21, 53)(22, 142)(23, 87)(24, 32)(25, 121)(26, 66)(28, 100)(29, 45)(30, 134)(31, 79)(33, 113)(34, 58)(36, 92)(38, 126)(39, 71)(41, 105)(42, 50)(43, 139)(44, 84)(46, 118)(47, 63)(49, 97)(51, 131)(52, 76)(54, 110)(56, 144)(57, 89)(59, 123)(60, 68)(62, 102)(64, 136)(65, 81)(67, 115)(70, 94)(72, 128)(75, 107)(77, 141)(78, 86)(80, 120)(83, 99)(85, 133)(88, 112)(93, 125)(96, 104)(98, 138)(101, 117)(106, 130)(111, 143)(114, 122)(119, 135)(132, 140)
b: (2, 56)(3, 111)(4, 22)(5, 77)(6, 132)(7, 43)(8, 98)(10, 64)(11, 119)(12, 30)(13, 85)(14, 140)(15, 51)(16, 106)(18, 72)(19, 127)(20, 38)(21, 93)(23, 59)(24, 114)(26, 80)(27, 135)(28, 46)(29, 101)(31, 67)(32, 122)(34, 88)(35, 143)(36, 54)(37, 109)(39, 75)(40, 130)(42, 96)(44, 62)(45, 117)(47, 83)(48, 138)(50, 104)(52, 70)(53, 125)(55, 91)(58, 112)(60, 78)(61, 133)(63, 99)(66, 120)(68, 86)(69, 141)(71, 107)(74, 128)(76, 94)(79, 115)(82, 136)(84, 102)(87, 123)(90, 144)(92, 110)(95, 131)(100, 118)(103, 139)(108, 126)(116, 134)(124, 142)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 144, 3 ]
144
-1 56 144 2 90
-2 1 57 3 91
-3 2 58 4 92
-4 3 59 5 93
-5 4 60 6 94
-6 5 61 7 95
-7 6 62 8 96
-8 7 63 9 97
-9 8 64 10 98
-10 11 99 9 65
-11 66 12 100 10
-12 11 67 13 101
-13 12 68 14 102
-14 13 69 15 103
-15 14 70 16 104
-16 15 71 17 105
-17 16 72 18 106
-18 17 73 19 107
-19 18 74 20 108
-20 19 75 21 109
-21 22 110 20 76
-22 77 23 111 21
-23 22 78 24 112
-24 23 79 25 113
-25 24 80 26 114
-26 25 81 27 115
-27 26 82 28 116
-28 27 83 29 117
-29 28 84 30 118
-30 29 85 31 119
-31 30 86 32 120
-32 33 121 31 87
-33 88 34 122 32
-34 33 89 35 123
-35 34 90 36 124
-36 35 91 37 125
-37 36 92 38 126
-38 37 93 39 127
-39 38 94 40 128
-40 39 95 41 129
-41 40 96 42 130
-42 41 97 43 131
-43 44 132 42 98
-44 99 45 133 43
-45 44 100 46 134
-46 45 101 47 135
-47 46 102 48 136
-48 47 103 49 137
-49 48 104 50 138
-50 49 105 51 139
-51 50 106 52 140
-52 51 107 53 141
-53 52 108 54 142
-54 55 143 53 109
-55 110 56 144 54
-56 55 1 111 57
-57 56 2 112 58
-58 57 3 113 59
-59 58 4 114 60
-60 59 5 115 61
-61 60 6 116 62
-62 61 7 117 63
-63 62 8 118 64
-64 63 9 119 65
-65 66 64 10 120
-66 11 121 67 65
-67 66 12 122 68
-68 67 13 123 69
-69 68 14 124 70
-70 69 15 125 71
-71 70 16 126 72
-72 71 17 127 73
-73 72 18 128 74
-74 73 19 129 75
-75 74 20 130 76
-76 77 75 21 131
-77 22 132 78 76
-78 77 23 133 79
-79 78 24 134 80
-80 79 25 135 81
-81 80 26 136 82
-82 81 27 137 83
-83 82 28 138 84
-84 83 29 139 85
-85 84 30 140 86
-86 85 31 141 87
-87 88 86 32 142
-88 33 143 89 87
-89 88 34 144 90
-90 1 89 35 91
-91 2 90 36 92
-92 3 91 37 93
-93 4 92 38 94
-94 5 93 39 95
-95 6 94 40 96
-96 7 95 41 97
-97 8 96 42 98
-98 99 9 97 43
-99 44 100 10 98
-100 11 99 45 101
-101 12 100 46 102
-102 13 101 47 103
-103 14 102 48 104
-104 15 103 49 105
-105 16 104 50 106
-106 17 105 51 107
-107 18 106 52 108
-108 19 107 53 109
-109 110 20 108 54
-110 55 111 21 109
-111 22 110 56 112
-112 23 111 57 113
-113 24 112 58 114
-114 25 113 59 115
-115 26 114 60 116
-116 27 115 61 117
-117 28 116 62 118
-118 29 117 63 119
-119 30 118 64 120
-120 121 31 119 65
-121 66 122 32 120
-122 33 121 67 123
-123 34 122 68 124
-124 35 123 69 125
-125 36 124 70 126
-126 37 125 71 127
-127 38 126 72 128
-128 39 127 73 129
-129 40 128 74 130
-130 41 129 75 131
-131 132 42 130 76
-132 77 133 43 131
-133 44 132 78 134
-134 45 133 79 135
-135 46 134 80 136
-136 47 135 81 137
-137 48 136 82 138
-138 49 137 83 139
-139 50 138 84 140
-140 51 139 85 141
-141 52 140 86 142
-142 143 53 141 87
-143 88 144 54 142
-144 55 143 1 89
0

**************