C4graphGraph forms for C4 [ 144, 7 ] = {4,4}_<15,9>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 144, 7 ] = {4,4}_<15,9>.

(I) Following is a form readable by MAGMA:

g:=Graph<144|{ {2, 3}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {1, 2}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {3, 4}, {139, 140}, {131, 132}, {123, 124}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {7, 8}, {135, 136}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {1, 49}, {2, 50}, {3, 51}, {4, 52}, {5, 53}, {6, 54}, {7, 55}, {8, 56}, {9, 57}, {10, 58}, {11, 59}, {12, 60}, {13, 61}, {14, 62}, {15, 63}, {64, 112}, {65, 113}, {66, 114}, {67, 115}, {68, 116}, {69, 117}, {70, 118}, {71, 119}, {72, 120}, {73, 121}, {74, 122}, {75, 123}, {76, 124}, {77, 125}, {78, 126}, {79, 127}, {1, 48}, {31, 32}, {95, 96}, {32, 107}, {48, 123}, {36, 111}, {33, 108}, {35, 110}, {34, 109}, {16, 64}, {56, 104}, {55, 103}, {54, 102}, {53, 101}, {52, 100}, {51, 99}, {50, 98}, {49, 97}, {48, 96}, {17, 65}, {18, 66}, {19, 67}, {20, 68}, {21, 69}, {22, 70}, {23, 71}, {24, 72}, {25, 73}, {26, 74}, {27, 75}, {28, 76}, {29, 77}, {30, 78}, {31, 79}, {57, 105}, {58, 106}, {59, 107}, {60, 108}, {61, 109}, {62, 110}, {63, 111}, {49, 96}, {37, 112}, {47, 122}, {45, 120}, {39, 114}, {38, 113}, {46, 121}, {40, 115}, {44, 119}, {41, 116}, {43, 118}, {42, 117}, {32, 80}, {47, 95}, {46, 94}, {45, 93}, {44, 92}, {43, 91}, {42, 90}, {41, 89}, {40, 88}, {39, 87}, {38, 86}, {37, 85}, {36, 84}, {35, 83}, {34, 82}, {33, 81}, {23, 98}, {29, 104}, {31, 106}, {22, 97}, {30, 105}, {4, 127}, {24, 99}, {28, 103}, {1, 124}, {3, 126}, {25, 100}, {27, 102}, {2, 125}, {26, 101}, {63, 64}, {5, 128}, {7, 130}, {13, 136}, {15, 138}, {21, 144}, {6, 129}, {14, 137}, {8, 131}, {12, 135}, {9, 132}, {11, 134}, {10, 133}, {16, 139}, {20, 143}, {17, 140}, {19, 142}, {18, 141}, {80, 128}, {81, 129}, {82, 130}, {83, 131}, {84, 132}, {85, 133}, {86, 134}, {87, 135}, {88, 136}, {89, 137}, {90, 138}, {91, 139}, {92, 140}, {93, 141}, {94, 142}, {95, 143}, {96, 144}, {97, 144}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 48)(3, 47)(4, 46)(5, 45)(6, 44)(7, 43)(8, 42)(9, 41)(10, 40)(11, 39)(12, 38)(13, 37)(14, 36)(15, 35)(16, 34)(17, 33)(18, 32)(19, 31)(20, 30)(21, 29)(22, 28)(23, 27)(24, 26)(49, 124)(50, 123)(51, 122)(52, 121)(53, 120)(54, 119)(55, 118)(56, 117)(57, 116)(58, 115)(59, 114)(60, 113)(61, 112)(62, 111)(63, 110)(64, 109)(65, 108)(66, 107)(67, 106)(68, 105)(69, 104)(70, 103)(71, 102)(72, 101)(73, 100)(74, 99)(75, 98)(76, 97)(77, 144)(78, 143)(79, 142)(80, 141)(81, 140)(82, 139)(83, 138)(84, 137)(85, 136)(86, 135)(87, 134)(88, 133)(89, 132)(90, 131)(91, 130)(92, 129)(93, 128)(94, 127)(95, 126)(96, 125)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)(49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)(97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)
c: (2, 49)(3, 97)(4, 22)(5, 70)(6, 118)(7, 43)(8, 91)(9, 139)(10, 16)(11, 64)(12, 112)(13, 37)(14, 85)(15, 133)(17, 58)(18, 106)(19, 31)(20, 79)(21, 127)(23, 52)(24, 100)(26, 73)(27, 121)(28, 46)(29, 94)(30, 142)(32, 67)(33, 115)(34, 40)(35, 88)(36, 136)(38, 61)(39, 109)(41, 82)(42, 130)(44, 55)(45, 103)(47, 76)(48, 124)(51, 98)(53, 71)(54, 119)(56, 92)(57, 140)(59, 65)(60, 113)(62, 86)(63, 134)(66, 107)(68, 80)(69, 128)(72, 101)(75, 122)(77, 95)(78, 143)(81, 116)(83, 89)(84, 137)(87, 110)(90, 131)(93, 104)(96, 125)(102, 120)(105, 141)(108, 114)(111, 135)(117, 129)(126, 144)(132, 138)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 144, 7 ]
144
-1 2 124 48 49
-2 1 3 125 50
-3 2 4 126 51
-4 3 5 127 52
-5 4 6 128 53
-6 5 7 129 54
-7 55 6 8 130
-8 56 7 9 131
-9 132 57 8 10
-10 11 133 58 9
-11 12 134 59 10
-12 11 13 135 60
-13 12 14 136 61
-14 13 15 137 62
-15 14 16 138 63
-16 15 17 139 64
-17 16 18 140 65
-18 66 17 19 141
-19 67 18 20 142
-20 143 68 19 21
-21 22 144 69 20
-22 23 70 97 21
-23 22 24 71 98
-24 99 23 25 72
-25 100 24 26 73
-26 101 25 27 74
-27 102 26 28 75
-28 103 27 29 76
-29 77 104 28 30
-30 78 105 29 31
-31 79 106 30 32
-32 33 80 107 31
-33 34 81 108 32
-34 33 35 82 109
-35 110 34 36 83
-36 111 35 37 84
-37 112 36 38 85
-38 113 37 39 86
-39 114 38 40 87
-40 88 115 39 41
-41 89 116 40 42
-42 90 117 41 43
-43 44 91 118 42
-44 45 92 119 43
-45 44 46 93 120
-46 121 45 47 94
-47 122 46 48 95
-48 1 123 47 96
-49 1 50 96 97
-50 2 49 51 98
-51 99 3 50 52
-52 100 4 51 53
-53 101 5 52 54
-54 55 102 6 53
-55 56 103 7 54
-56 55 57 104 8
-57 56 58 105 9
-58 57 59 106 10
-59 11 58 60 107
-60 12 59 61 108
-61 13 60 62 109
-62 110 14 61 63
-63 111 15 62 64
-64 112 16 63 65
-65 66 113 17 64
-66 67 114 18 65
-67 66 68 115 19
-68 67 69 116 20
-69 68 70 117 21
-70 22 69 71 118
-71 23 70 72 119
-72 24 71 73 120
-73 121 25 72 74
-74 122 26 73 75
-75 123 27 74 76
-76 77 124 28 75
-77 78 125 29 76
-78 77 79 126 30
-79 78 80 127 31
-80 79 81 128 32
-81 33 80 82 129
-82 34 81 83 130
-83 35 82 84 131
-84 132 36 83 85
-85 133 37 84 86
-86 134 38 85 87
-87 88 135 39 86
-88 89 136 40 87
-89 88 90 137 41
-90 89 91 138 42
-91 90 92 139 43
-92 44 91 93 140
-93 45 92 94 141
-94 46 93 95 142
-95 143 47 94 96
-96 144 48 49 95
-97 22 144 49 98
-98 99 23 50 97
-99 100 24 51 98
-100 99 101 25 52
-101 100 102 26 53
-102 101 103 27 54
-103 55 102 104 28
-104 56 103 105 29
-105 57 104 106 30
-106 58 105 107 31
-107 59 106 108 32
-108 33 60 107 109
-109 110 34 61 108
-110 111 35 62 109
-111 110 112 36 63
-112 111 113 37 64
-113 112 114 38 65
-114 66 113 115 39
-115 67 114 116 40
-116 68 115 117 41
-117 69 116 118 42
-118 70 117 119 43
-119 44 71 118 120
-120 121 45 72 119
-121 122 46 73 120
-122 121 123 47 74
-123 122 124 48 75
-124 1 123 125 76
-125 77 2 124 126
-126 78 3 125 127
-127 79 4 126 128
-128 80 5 127 129
-129 81 6 128 130
-130 82 7 129 131
-131 132 83 8 130
-132 133 84 9 131
-133 132 134 85 10
-134 11 133 135 86
-135 12 134 136 87
-136 88 13 135 137
-137 89 14 136 138
-138 90 15 137 139
-139 91 16 138 140
-140 92 17 139 141
-141 93 18 140 142
-142 143 94 19 141
-143 144 95 20 142
-144 143 96 97 21
0

**************