C4graphGraph forms for C4 [ 144, 9 ] = {4,4}_<20,16>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 144, 9 ] = {4,4}_<20,16>.

(I) Following is a form readable by MAGMA:

g:=Graph<144|{ {2, 3}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {34, 35}, {32, 33}, {30, 31}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {110, 111}, {1, 2}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {3, 4}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {7, 8}, {135, 136}, {119, 120}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {1, 37}, {2, 38}, {3, 39}, {8, 44}, {9, 45}, {10, 46}, {11, 47}, {16, 52}, {17, 53}, {18, 54}, {19, 55}, {24, 60}, {25, 61}, {26, 62}, {27, 63}, {64, 100}, {65, 101}, {66, 102}, {67, 103}, {72, 108}, {73, 109}, {74, 110}, {75, 111}, {80, 116}, {81, 117}, {82, 118}, {83, 119}, {88, 124}, {89, 125}, {90, 126}, {91, 127}, {1, 36}, {73, 108}, {4, 40}, {5, 41}, {6, 42}, {7, 43}, {20, 56}, {21, 57}, {22, 58}, {23, 59}, {68, 104}, {69, 105}, {70, 106}, {71, 107}, {84, 120}, {85, 121}, {86, 122}, {87, 123}, {12, 48}, {13, 49}, {14, 50}, {15, 51}, {76, 112}, {77, 113}, {78, 114}, {79, 115}, {31, 32}, {95, 96}, {33, 109}, {35, 111}, {34, 110}, {36, 112}, {28, 64}, {31, 67}, {30, 66}, {29, 65}, {60, 96}, {61, 97}, {62, 98}, {63, 99}, {32, 68}, {56, 92}, {51, 87}, {50, 86}, {49, 85}, {48, 84}, {43, 79}, {42, 78}, {41, 77}, {40, 76}, {35, 71}, {34, 70}, {33, 69}, {57, 93}, {58, 94}, {59, 95}, {36, 72}, {55, 91}, {54, 90}, {53, 89}, {52, 88}, {39, 75}, {38, 74}, {37, 73}, {37, 72}, {1, 113}, {2, 114}, {3, 115}, {4, 116}, {5, 117}, {6, 118}, {7, 119}, {8, 120}, {9, 121}, {10, 122}, {11, 123}, {12, 124}, {13, 125}, {14, 126}, {15, 127}, {44, 80}, {47, 83}, {46, 82}, {45, 81}, {63, 64}, {16, 128}, {31, 143}, {30, 142}, {29, 141}, {17, 129}, {18, 130}, {19, 131}, {20, 132}, {21, 133}, {22, 134}, {23, 135}, {24, 136}, {25, 137}, {26, 138}, {27, 139}, {28, 140}, {32, 144}, {92, 128}, {93, 129}, {94, 130}, {95, 131}, {96, 132}, {97, 133}, {98, 134}, {99, 135}, {104, 140}, {105, 141}, {106, 142}, {107, 143}, {100, 136}, {101, 137}, {102, 138}, {103, 139}, {108, 144}, {109, 144}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 37)(3, 73)(4, 109)(5, 33)(6, 69)(7, 105)(8, 141)(9, 29)(10, 65)(11, 101)(12, 137)(13, 25)(14, 61)(15, 97)(16, 133)(17, 21)(18, 57)(19, 93)(20, 129)(22, 53)(23, 89)(24, 125)(26, 49)(27, 85)(28, 121)(30, 45)(31, 81)(32, 117)(34, 41)(35, 77)(36, 113)(39, 74)(40, 110)(42, 70)(43, 106)(44, 142)(46, 66)(47, 102)(48, 138)(50, 62)(51, 98)(52, 134)(54, 58)(55, 94)(56, 130)(59, 90)(60, 126)(63, 86)(64, 122)(67, 82)(68, 118)(71, 78)(72, 114)(76, 111)(79, 107)(80, 143)(83, 103)(84, 139)(87, 99)(88, 135)(91, 95)(92, 131)(96, 127)(100, 123)(104, 119)(108, 115)(116, 144)(120, 140)(124, 136)(128, 132)
b: (2, 113)(3, 77)(4, 41)(6, 117)(7, 81)(8, 45)(10, 121)(11, 85)(12, 49)(14, 125)(15, 89)(16, 53)(18, 129)(19, 93)(20, 57)(22, 133)(23, 97)(24, 61)(26, 137)(27, 101)(28, 65)(30, 141)(31, 105)(32, 69)(34, 109)(35, 73)(36, 37)(38, 112)(39, 76)(42, 116)(43, 80)(46, 120)(47, 84)(50, 124)(51, 88)(54, 128)(55, 92)(58, 132)(59, 96)(62, 136)(63, 100)(66, 140)(67, 104)(70, 144)(71, 108)(74, 111)(78, 115)(82, 119)(86, 123)(90, 127)(94, 131)(98, 135)(102, 139)(106, 143)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108)(109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 144, 9 ]
144
-1 2 36 113 37
-2 1 3 114 38
-3 2 4 115 39
-4 3 5 116 40
-5 4 6 117 41
-6 5 7 118 42
-7 6 8 119 43
-8 44 7 9 120
-9 121 45 8 10
-10 11 122 46 9
-11 12 123 47 10
-12 11 13 124 48
-13 12 14 125 49
-14 13 15 126 50
-15 14 16 127 51
-16 15 17 128 52
-17 16 18 129 53
-18 17 19 130 54
-19 55 18 20 131
-20 132 56 19 21
-21 22 133 57 20
-22 23 134 58 21
-23 22 24 135 59
-24 23 25 136 60
-25 24 26 137 61
-26 25 27 138 62
-27 26 28 139 63
-28 27 29 140 64
-29 28 30 141 65
-30 66 29 31 142
-31 143 67 30 32
-32 33 144 68 31
-33 34 69 32 109
-34 33 110 35 70
-35 34 111 36 71
-36 1 35 112 72
-37 1 38 72 73
-38 2 37 39 74
-39 3 38 40 75
-40 4 39 41 76
-41 77 5 40 42
-42 78 6 41 43
-43 44 79 7 42
-44 45 80 8 43
-45 44 46 81 9
-46 45 47 82 10
-47 11 46 48 83
-48 12 47 49 84
-49 13 48 50 85
-50 14 49 51 86
-51 15 50 52 87
-52 88 16 51 53
-53 89 17 52 54
-54 55 90 18 53
-55 56 91 19 54
-56 55 57 92 20
-57 56 58 93 21
-58 22 57 59 94
-59 23 58 60 95
-60 24 59 61 96
-61 25 60 62 97
-62 26 61 63 98
-63 99 27 62 64
-64 100 28 63 65
-65 66 101 29 64
-66 67 102 30 65
-67 66 68 103 31
-68 67 69 104 32
-69 33 68 70 105
-70 34 69 71 106
-71 35 70 72 107
-72 36 37 71 108
-73 37 74 108 109
-74 110 38 73 75
-75 111 39 74 76
-76 77 112 40 75
-77 78 113 41 76
-78 77 79 114 42
-79 78 80 115 43
-80 44 79 81 116
-81 45 80 82 117
-82 46 81 83 118
-83 47 82 84 119
-84 48 83 85 120
-85 121 49 84 86
-86 122 50 85 87
-87 88 123 51 86
-88 89 124 52 87
-89 88 90 125 53
-90 89 91 126 54
-91 55 90 92 127
-92 56 91 93 128
-93 57 92 94 129
-94 58 93 95 130
-95 59 94 96 131
-96 132 60 95 97
-97 133 61 96 98
-98 99 134 62 97
-99 100 135 63 98
-100 99 101 136 64
-101 100 102 137 65
-102 66 101 103 138
-103 67 102 104 139
-104 68 103 105 140
-105 69 104 106 141
-106 70 105 107 142
-107 143 71 106 108
-108 144 72 73 107
-109 33 110 144 73
-110 34 111 74 109
-111 110 35 112 75
-112 111 36 113 76
-113 77 1 112 114
-114 78 2 113 115
-115 79 3 114 116
-116 80 4 115 117
-117 81 5 116 118
-118 82 6 117 119
-119 83 7 118 120
-120 121 84 8 119
-121 122 85 9 120
-122 121 123 86 10
-123 11 122 124 87
-124 88 12 123 125
-125 89 13 124 126
-126 90 14 125 127
-127 91 15 126 128
-128 92 16 127 129
-129 93 17 128 130
-130 94 18 129 131
-131 132 95 19 130
-132 133 96 20 131
-133 132 134 97 21
-134 22 133 135 98
-135 99 23 134 136
-136 100 24 135 137
-137 101 25 136 138
-138 102 26 137 139
-139 103 27 138 140
-140 104 28 139 141
-141 105 29 140 142
-142 143 106 30 141
-143 144 107 31 142
-144 143 108 32 109
0

**************