[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 144, 14 ]. See Glossary for some
detail.
MPS( 4, 72; 17) = MPS( 4, 72; 19) = R_ 72( 38, 37)
= R_ 72( 34, 37) = PX( 36, 2) = KE_ 36( 1, 3, 2, 35, 1)
= Curtain_ 36( 1, 18, 1, 2, 20) = CPM( 4, 2, 9, 1) = CPM( 4, 2, 18,
1)
= AMC( 18, 4, [ 0. 1: 3. 0]) = PL(BC_36({ 0, 18 }, { 1, 19 }) =
UG(ATD[144, 86])
= UG(ATD[144, 89]) = UG(ATD[144, 90]) = UG(ATD[144, 94])
= ATD[ 6, 1]#ATD[ 36, 14] = ATD[ 12, 5]#ATD[ 18, 3] = ATD[ 12,
5]#ATD[ 36, 14]
= ATD[ 18, 3]#DCyc[ 4] = ATD[ 18, 3]#ATD[ 36, 14] = ATD[ 36, 14]#DCyc[
4]
= ATD[ 36, 14]#ATD[ 36, 14] = UG(Rmap(288, 48) { 36, 4| 4}_ 36) =
UG(Rmap(288, 49) { 36, 4| 4}_ 72)
= UG(Rmap(288, 65) { 72, 4| 4}_ 72) = UG(Rmap(288,522) { 36, 4| 4}_ 36) =
MG(Rmap(144, 27) { 4, 36| 4}_ 36)
= DG(Rmap(144, 27) { 4, 36| 4}_ 36) = MG(Rmap(144, 28) { 4, 36| 4}_ 36) =
DG(Rmap(144, 28) { 4, 36| 4}_ 36)
= DG(Rmap(144, 30) { 36, 4| 4}_ 36) = DG(Rmap(144, 31) { 36, 4| 4}_ 36) =
MG(Rmap(144, 32) { 4, 72| 4}_ 72)
= DG(Rmap(144, 32) { 4, 72| 4}_ 72) = DG(Rmap(144, 34) { 72, 4| 4}_ 72) =
MG(Rmap(144,192) { 4, 72| 4}_ 72)
= DG(Rmap(144,195) { 72, 4| 4}_ 72) = DG(Rmap( 72, 82) { 4, 36| 4}_ 36) =
DG(Rmap( 72, 83) { 4, 36| 4}_ 36)
= HC(Rmap( 36, 11) { 9, 4| 4}_ 18) = BGCG(W( 18, 2); K2;4) = PL(W( 36, 2)[
4^ 36])
= BGCG(W( 36, 2); K1;4) = BGCG(R_ 36( 20, 19); K1;5) = AT[144, 3]