[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 144, 21 ]. See Glossary for some
detail.
PL(MC3( 6, 12, 1, 7, 5, 0, 1), [4^18, 6^12]) = PL(ATD[ 6, 1]#DCyc[
6]) = PL(ATD[ 6, 1]#ATD[ 18, 1])
= PL(ATD[ 9, 1]#DCyc[ 4]) = PL(ATD[ 9, 1]#ATD[ 12, 5]) = PL(ATD[ 12,
5]#DCyc[ 3])
= PL(ATD[ 12, 5]#DCyc[ 6]) = PL(ATD[ 12, 5]#ATD[ 18, 1]) = PL(ATD[ 18,
1]#DCyc[ 4])
= XI(Rmap( 72, 20) { 6, 12| 4}_ 6) = PL(CSI(Octahedron[ 4^ 3], 6)) =
PL(CSI(DW( 3, 3)[ 6^ 3], 4))
= PL(CSI(W( 6, 2)[ 4^ 6], 3)) = PL(CSI(W( 6, 2)[ 4^ 6], 6)) = BGCG(W(
6, 2), C_ 6, {1, 1', 2', 3', 4', 5'})
= PL(CS(DW( 6, 3)[ 6^ 6], 0)) = PL(CSI(DW( 6, 3)[ 6^ 6], 4)) = BGCG(DW(
6, 3), C_ 4, {3, 3', 4'})
= BGCG(UG(ATD[72,13]); K1;6) = SS[144, 6]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
3 | - | - | - | - | - | - | 1 | 7 | - | - | 0 | 0 |
4 | - | - | - | - | - | - | 0 | 0 | - | - | 7 | 1 |
5 | - | - | - | - | - | - | 1 | 7 | 11 | 5 | - | - |
6 | - | - | - | - | - | - | - | - | 11 | 5 | 7 | 1 |
7 | - | 0 | 11 | 0 | 11 | - | - | - | - | - | - | - |
8 | - | 0 | 5 | 0 | 5 | - | - | - | - | - | - | - |
9 | 0 | 0 | - | - | 1 | 1 | - | - | - | - | - | - |
10 | 0 | 0 | - | - | 7 | 7 | - | - | - | - | - | - |
11 | 0 | - | 0 | 5 | - | 5 | - | - | - | - | - | - |
12 | 0 | - | 0 | 11 | - | 11 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | 0 | 0 | - |
2 | - | - | - | - | - | - | 8 | - | 0 | 8 | 0 | - |
3 | - | - | - | - | - | - | - | 0 | 2 | - | 8 | 0 |
4 | - | - | - | - | - | - | - | 0 | 10 | - | 4 | 0 |
5 | - | - | - | - | - | - | 1 | 2 | - | 7 | - | 8 |
6 | - | - | - | - | - | - | 1 | 10 | - | 7 | - | 4 |
7 | 0 | 4 | - | - | 11 | 11 | - | - | - | - | - | - |
8 | - | - | 0 | 0 | 10 | 2 | - | - | - | - | - | - |
9 | 0 | 0 | 10 | 2 | - | - | - | - | - | - | - | - |
10 | 0 | 4 | - | - | 5 | 5 | - | - | - | - | - | - |
11 | 0 | 0 | 4 | 8 | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 4 | 8 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | 0 1 | 0 7 | - | - | - |
2 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
3 | - | - | - | - | - | - | 4 11 | - | - | - | 10 11 | - |
4 | - | - | - | - | - | - | 4 | - | - | 0 | 10 | 0 |
5 | - | - | - | - | - | - | - | 1 | 7 | 0 | - | 6 |
6 | - | - | - | - | - | - | - | - | - | 4 5 | - | 5 10 |
7 | - | 0 | 1 8 | 8 | - | - | - | - | - | - | - | - |
8 | 0 11 | 0 | - | - | 11 | - | - | - | - | - | - | - |
9 | 0 5 | 0 | - | - | 5 | - | - | - | - | - | - | - |
10 | - | - | - | 0 | 0 | 7 8 | - | - | - | - | - | - |
11 | - | 0 | 1 2 | 2 | - | - | - | - | - | - | - | - |
12 | - | - | - | 0 | 6 | 2 7 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | - | - | 0 | 0 |
2 | - | - | - | - | - | - | 0 1 | 0 7 | - | - | - | - |
3 | - | - | - | - | - | - | - | - | 0 | 0 | 5 | 5 |
4 | - | - | - | - | - | - | - | - | 0 1 | 0 7 | - | - |
5 | - | - | - | - | - | - | 1 | 7 | - | - | 5 | 11 |
6 | - | - | - | - | - | - | - | - | 3 | 9 | 0 | 6 |
7 | 0 | 0 11 | - | - | 11 | - | - | - | - | - | - | - |
8 | 0 | 0 5 | - | - | 5 | - | - | - | - | - | - | - |
9 | - | - | 0 | 0 11 | - | 9 | - | - | - | - | - | - |
10 | - | - | 0 | 0 5 | - | 3 | - | - | - | - | - | - |
11 | 0 | - | 7 | - | 7 | 0 | - | - | - | - | - | - |
12 | 0 | - | 7 | - | 1 | 6 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | 0 | - | 0 |
2 | - | - | - | - | - | - | 4 | - | 0 | 0 | - | 4 |
3 | - | - | - | - | - | - | - | 0 3 | 10 | 4 | - | - |
4 | - | - | - | - | - | - | - | 0 3 | 2 | 8 | - | - |
5 | - | - | - | - | - | - | 2 | - | - | - | 0 3 | 8 |
6 | - | - | - | - | - | - | 10 | - | - | - | 0 3 | 4 |
7 | 0 | 8 | - | - | 10 | 2 | - | - | - | - | - | - |
8 | - | - | 0 9 | 0 9 | - | - | - | - | - | - | - | - |
9 | 0 | 0 | 2 | 10 | - | - | - | - | - | - | - | - |
10 | 0 | 0 | 8 | 4 | - | - | - | - | - | - | - | - |
11 | - | - | - | - | 0 9 | 0 9 | - | - | - | - | - | - |
12 | 0 | 8 | - | - | 4 | 8 | - | - | - | - | - | - |