C4graphGraph forms for C4 [ 144, 25 ] = KE_36(1,19,16,33,1)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 144, 25 ] = KE_36(1,19,16,33,1).

(I) Following is a form readable by MAGMA:

g:=Graph<144|{ {2, 3}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {32, 33}, {30, 31}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {20, 21}, {18, 19}, {16, 17}, {14, 15}, {12, 13}, {10, 11}, {8, 9}, {6, 7}, {4, 5}, {34, 35}, {1, 2}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {33, 34}, {29, 30}, {25, 26}, {21, 22}, {17, 18}, {13, 14}, {9, 10}, {5, 6}, {3, 4}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {27, 28}, {19, 20}, {11, 12}, {35, 36}, {7, 8}, {135, 136}, {119, 120}, {23, 24}, {64, 80}, {72, 88}, {71, 87}, {70, 86}, {69, 85}, {68, 84}, {67, 83}, {66, 82}, {65, 81}, {32, 49}, {34, 51}, {36, 53}, {33, 50}, {35, 52}, {15, 16}, {143, 144}, {111, 112}, {64, 100}, {91, 127}, {90, 126}, {89, 125}, {88, 124}, {83, 119}, {82, 118}, {81, 117}, {80, 116}, {75, 111}, {74, 110}, {73, 109}, {72, 108}, {67, 103}, {66, 102}, {65, 101}, {1, 36}, {68, 104}, {87, 123}, {86, 122}, {85, 121}, {84, 120}, {71, 107}, {70, 106}, {69, 105}, {31, 48}, {20, 37}, {30, 47}, {28, 45}, {26, 43}, {24, 41}, {22, 39}, {21, 38}, {29, 46}, {25, 42}, {2, 55}, {10, 63}, {8, 61}, {1, 54}, {27, 44}, {9, 62}, {3, 56}, {7, 60}, {76, 112}, {79, 115}, {78, 114}, {77, 113}, {4, 57}, {6, 59}, {5, 58}, {31, 32}, {23, 40}, {40, 109}, {58, 127}, {42, 111}, {48, 117}, {50, 119}, {56, 125}, {41, 110}, {49, 118}, {57, 126}, {1, 73}, {32, 104}, {23, 95}, {22, 94}, {21, 93}, {20, 92}, {19, 91}, {18, 90}, {17, 89}, {16, 88}, {7, 79}, {6, 78}, {5, 77}, {4, 76}, {3, 75}, {2, 74}, {33, 105}, {34, 106}, {35, 107}, {36, 108}, {11, 64}, {15, 68}, {51, 120}, {55, 124}, {44, 96}, {45, 97}, {46, 98}, {47, 99}, {12, 65}, {14, 67}, {52, 121}, {54, 123}, {13, 66}, {53, 122}, {48, 100}, {49, 101}, {50, 102}, {51, 103}, {56, 108}, {16, 69}, {18, 71}, {17, 70}, {8, 80}, {15, 87}, {14, 86}, {13, 85}, {12, 84}, {11, 83}, {10, 82}, {9, 81}, {19, 72}, {43, 112}, {47, 116}, {52, 104}, {63, 99}, {62, 98}, {61, 97}, {60, 96}, {53, 105}, {54, 106}, {55, 107}, {44, 113}, {46, 115}, {45, 114}, {40, 76}, {59, 95}, {58, 94}, {41, 77}, {42, 78}, {43, 79}, {48, 84}, {49, 85}, {50, 86}, {51, 87}, {56, 92}, {57, 93}, {37, 73}, {38, 74}, {39, 75}, {52, 88}, {53, 89}, {54, 90}, {55, 91}, {57, 73}, {63, 79}, {62, 78}, {61, 77}, {60, 76}, {59, 75}, {58, 74}, {40, 92}, {41, 93}, {42, 94}, {43, 95}, {24, 96}, {31, 103}, {30, 102}, {29, 101}, {28, 100}, {27, 99}, {26, 98}, {25, 97}, {37, 89}, {38, 90}, {39, 91}, {44, 80}, {45, 81}, {46, 82}, {47, 83}, {38, 143}, {37, 142}, {39, 144}, {59, 128}, {63, 132}, {60, 129}, {62, 131}, {61, 130}, {64, 133}, {72, 141}, {66, 135}, {65, 134}, {67, 136}, {71, 140}, {68, 137}, {70, 139}, {69, 138}, {92, 128}, {95, 131}, {94, 130}, {93, 129}, {96, 132}, {107, 143}, {106, 142}, {105, 141}, {104, 140}, {99, 135}, {98, 134}, {97, 133}, {100, 136}, {103, 139}, {102, 138}, {101, 137}, {108, 144}, {109, 144}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 73)(3, 57)(5, 76)(6, 60)(8, 79)(9, 63)(11, 82)(12, 66)(14, 85)(15, 69)(17, 88)(18, 72)(20, 91)(21, 39)(23, 94)(24, 42)(26, 97)(27, 45)(29, 100)(30, 48)(32, 103)(33, 51)(35, 106)(36, 54)(37, 55)(38, 144)(40, 58)(41, 111)(43, 61)(44, 114)(46, 64)(47, 117)(49, 67)(50, 120)(52, 70)(53, 123)(56, 126)(59, 129)(62, 132)(65, 135)(68, 138)(71, 141)(74, 109)(75, 93)(77, 112)(78, 96)(80, 115)(81, 99)(83, 118)(84, 102)(86, 121)(87, 105)(89, 124)(90, 108)(92, 127)(95, 130)(98, 133)(101, 136)(104, 139)(107, 142)
b: (2, 36)(3, 35)(4, 34)(5, 33)(6, 32)(7, 31)(8, 30)(9, 29)(10, 28)(11, 27)(12, 26)(13, 25)(14, 24)(15, 23)(16, 22)(17, 21)(18, 20)(37, 90)(38, 89)(39, 88)(40, 87)(41, 86)(42, 85)(43, 84)(44, 83)(45, 82)(46, 81)(47, 80)(48, 79)(49, 78)(50, 77)(51, 76)(52, 75)(53, 74)(54, 73)(55, 108)(56, 107)(57, 106)(58, 105)(59, 104)(60, 103)(61, 102)(62, 101)(63, 100)(64, 99)(65, 98)(66, 97)(67, 96)(68, 95)(69, 94)(70, 93)(71, 92)(72, 91)(109, 123)(110, 122)(111, 121)(112, 120)(113, 119)(114, 118)(115, 117)(124, 144)(125, 143)(126, 142)(127, 141)(128, 140)(129, 139)(130, 138)(131, 137)(132, 136)(133, 135)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108)(109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 144, 25 ]
144
-1 2 36 73 54
-2 55 1 3 74
-3 56 2 4 75
-4 57 3 5 76
-5 77 58 4 6
-6 78 59 5 7
-7 79 60 6 8
-8 80 61 7 9
-9 81 62 8 10
-10 11 82 63 9
-11 12 83 64 10
-12 11 13 84 65
-13 66 12 14 85
-14 67 13 15 86
-15 68 14 16 87
-16 88 69 15 17
-17 89 70 16 18
-18 90 71 17 19
-19 91 72 18 20
-20 37 92 19 21
-21 22 38 93 20
-22 23 39 94 21
-23 22 24 40 95
-24 23 25 41 96
-25 24 26 42 97
-26 25 27 43 98
-27 44 99 26 28
-28 45 100 27 29
-29 46 101 28 30
-30 47 102 29 31
-31 48 103 30 32
-32 33 49 104 31
-33 34 50 105 32
-34 33 35 51 106
-35 34 36 52 107
-36 1 35 53 108
-37 89 73 20 142
-38 143 90 74 21
-39 22 144 91 75
-40 23 92 76 109
-41 77 110 24 93
-42 78 111 25 94
-43 79 112 26 95
-44 80 113 27 96
-45 81 114 28 97
-46 82 115 29 98
-47 99 83 116 30
-48 100 84 117 31
-49 101 85 118 32
-50 33 102 86 119
-51 34 103 87 120
-52 88 121 35 104
-53 89 122 36 105
-54 1 90 123 106
-55 2 91 124 107
-56 3 92 125 108
-57 4 93 126 73
-58 5 94 127 74
-59 6 95 128 75
-60 7 96 129 76
-61 77 8 97 130
-62 78 9 98 131
-63 99 132 79 10
-64 11 100 133 80
-65 12 101 134 81
-66 13 102 135 82
-67 14 103 136 83
-68 15 104 137 84
-69 16 105 138 85
-70 17 106 139 86
-71 18 107 140 87
-72 88 19 108 141
-73 1 57 37 109
-74 110 2 58 38
-75 111 3 59 39
-76 112 4 60 40
-77 113 5 61 41
-78 114 6 62 42
-79 115 7 63 43
-80 44 116 8 64
-81 45 117 9 65
-82 66 46 118 10
-83 11 67 47 119
-84 12 68 48 120
-85 121 13 69 49
-86 122 14 70 50
-87 123 15 71 51
-88 124 16 72 52
-89 37 125 17 53
-90 38 126 18 54
-91 55 39 127 19
-92 56 40 128 20
-93 57 41 129 21
-94 22 58 42 130
-95 23 59 43 131
-96 44 132 24 60
-97 45 133 25 61
-98 46 134 26 62
-99 47 135 27 63
-100 48 136 28 64
-101 49 137 29 65
-102 66 50 138 30
-103 67 51 139 31
-104 68 52 140 32
-105 33 69 53 141
-106 34 70 54 142
-107 55 143 35 71
-108 56 144 36 72
-109 110 144 40 73
-110 111 41 74 109
-111 110 112 42 75
-112 111 113 43 76
-113 44 77 112 114
-114 45 78 113 115
-115 46 79 114 116
-116 47 80 115 117
-117 48 81 116 118
-118 49 82 117 119
-119 50 83 118 120
-120 121 51 84 119
-121 122 52 85 120
-122 121 123 53 86
-123 122 124 54 87
-124 55 88 123 125
-125 56 89 124 126
-126 57 90 125 127
-127 58 91 126 128
-128 59 92 127 129
-129 60 93 128 130
-130 61 94 129 131
-131 132 62 95 130
-132 133 63 96 131
-133 132 134 64 97
-134 133 135 65 98
-135 66 99 134 136
-136 67 100 135 137
-137 68 101 136 138
-138 69 102 137 139
-139 70 103 138 140
-140 71 104 139 141
-141 72 105 140 142
-142 143 37 106 141
-143 144 38 107 142
-144 143 39 108 109
0

**************