C4graphGraph forms for C4 [ 144, 33 ] = UG(ATD[144,12])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 144, 33 ] = UG(ATD[144,12]).

(I) Following is a form readable by MAGMA:

g:=Graph<144|{ {1, 3}, {45, 47}, {81, 83}, {1, 2}, {124, 127}, {112, 115}, {101, 102}, {4, 7}, {65, 66}, {120, 124}, {138, 142}, {137, 141}, {121, 125}, {3, 6}, {131, 134}, {128, 133}, {59, 62}, {41, 44}, {2, 4}, {137, 143}, {129, 135}, {99, 101}, {2, 5}, {83, 84}, {88, 95}, {5, 13}, {118, 126}, {103, 111}, {38, 46}, {7, 15}, {6, 14}, {33, 40}, {131, 138}, {128, 137}, {112, 121}, {54, 63}, {53, 60}, {71, 78}, {35, 41}, {134, 140}, {129, 139}, {65, 75}, {3, 8}, {133, 142}, {101, 110}, {49, 58}, {7, 12}, {68, 79}, {70, 77}, {85, 94}, {16, 28}, {23, 27}, {19, 31}, {18, 30}, {17, 29}, {4, 9}, {130, 143}, {6, 11}, {81, 92}, {36, 42}, {134, 136}, {117, 123}, {113, 127}, {99, 109}, {83, 93}, {5, 10}, {130, 141}, {52, 59}, {50, 61}, {21, 26}, {67, 76}, {32, 48}, {108, 124}, {104, 120}, {33, 49}, {70, 86}, {71, 87}, {35, 50}, {111, 126}, {38, 55}, {74, 91}, {72, 90}, {105, 123}, {103, 117}, {11, 24}, {110, 125}, {64, 83}, {96, 115}, {15, 27}, {43, 63}, {42, 62}, {77, 89}, {12, 25}, {133, 144}, {45, 56}, {40, 61}, {47, 57}, {66, 84}, {67, 85}, {73, 95}, {98, 116}, {13, 26}, {109, 122}, {36, 51}, {8, 16}, {34, 58}, {14, 22}, {12, 20}, {11, 19}, {10, 18}, {9, 17}, {74, 82}, {98, 122}, {32, 57}, {109, 116}, {72, 81}, {96, 121}, {104, 114}, {138, 144}, {107, 113}, {106, 112}, {39, 60}, {69, 94}, {41, 53}, {107, 119}, {106, 118}, {64, 92}, {68, 88}, {8, 21}, {10, 23}, {77, 80}, {37, 59}, {9, 22}, {47, 48}, {14, 17}, {66, 93}, {73, 104}, {69, 103}, {75, 105}, {87, 117}, {78, 107}, {30, 56}, {76, 106}, {94, 120}, {22, 49}, {24, 50}, {29, 55}, {28, 54}, {25, 51}, {93, 119}, {75, 96}, {91, 112}, {13, 33}, {78, 98}, {79, 99}, {93, 113}, {94, 114}, {15, 34}, {76, 97}, {91, 118}, {26, 52}, {27, 53}, {88, 104}, {89, 105}, {92, 108}, {24, 41}, {30, 47}, {28, 45}, {26, 43}, {84, 102}, {85, 103}, {16, 35}, {29, 46}, {25, 42}, {20, 39}, {20, 32}, {21, 33}, {80, 100}, {95, 107}, {17, 36}, {23, 34}, {19, 38}, {18, 37}, {27, 44}, {82, 101}, {86, 97}, {31, 39}, {87, 111}, {92, 100}, {89, 96}, {90, 99}, {84, 110}, {80, 108}, {86, 106}, {95, 98}, {22, 40}, {31, 32}, {82, 109}, {1, 79}, {1, 90}, {34, 67}, {55, 86}, {37, 68}, {3, 97}, {58, 88}, {39, 69}, {6, 100}, {2, 97}, {43, 72}, {46, 74}, {44, 73}, {62, 91}, {60, 89}, {51, 85}, {61, 90}, {23, 127}, {8, 100}, {62, 82}, {61, 81}, {60, 80}, {44, 64}, {18, 127}, {42, 71}, {40, 70}, {57, 87}, {46, 65}, {52, 68}, {53, 69}, {56, 73}, {48, 66}, {49, 67}, {21, 102}, {50, 70}, {58, 79}, {63, 74}, {4, 114}, {16, 102}, {5, 114}, {57, 78}, {9, 126}, {11, 115}, {56, 64}, {7, 126}, {13, 116}, {55, 77}, {48, 75}, {59, 71}, {14, 115}, {10, 116}, {63, 65}, {54, 72}, {51, 76}, {15, 135}, {12, 135}, {30, 144}, {31, 141}, {24, 139}, {29, 136}, {25, 142}, {19, 139}, {28, 132}, {20, 142}, {45, 143}, {35, 132}, {43, 140}, {38, 141}, {36, 136}, {37, 144}, {52, 140}, {54, 143}, {105, 128}, {110, 130}, {111, 131}, {108, 129}, {122, 138}, {123, 139}, {125, 140}, {119, 133}, {113, 132}, {125, 136}, {118, 131}, {117, 128}, {124, 132}, {120, 129}, {121, 130}, {122, 134}, {123, 135}, {119, 137} }>;

(II) A more general form is to represent the graph as the orbit of {1, 3} under the group generated by the following permutations:

a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(18, 28)(20, 31)(23, 35)(25, 38)(27, 41)(29, 36)(30, 45)(34, 50)(37, 54)(40, 49)(42, 46)(43, 52)(48, 57)(51, 55)(58, 61)(59, 63)(60, 69)(62, 74)(64, 73)(65, 71)(66, 78)(67, 70)(68, 72)(75, 87)(76, 86)(77, 85)(79, 90)(80, 94)(81, 88)(83, 95)(84, 98)(89, 103)(92, 104)(93, 107)(96, 111)(100, 114)(101, 109)(102, 116)(105, 117)(108, 120)(110, 122)(112, 118)(115, 126)(121, 131)(125, 134)(127, 132)(130, 138)(133, 137)(135, 139)(141, 142)(143, 144)
b: (2, 79)(3, 90)(4, 68)(5, 58)(6, 72)(7, 37)(8, 61)(9, 52)(10, 34)(11, 54)(12, 144)(13, 49)(14, 43)(15, 18)(16, 50)(17, 140)(19, 143)(20, 133)(21, 40)(22, 26)(24, 28)(25, 138)(27, 127)(29, 125)(30, 135)(31, 137)(32, 128)(36, 134)(38, 130)(39, 119)(41, 132)(42, 131)(44, 124)(45, 139)(46, 121)(47, 123)(48, 105)(51, 122)(53, 113)(55, 110)(56, 129)(57, 117)(59, 126)(60, 93)(62, 118)(63, 115)(64, 108)(65, 96)(66, 89)(67, 116)(69, 107)(70, 102)(71, 111)(73, 120)(74, 112)(76, 109)(77, 84)(78, 103)(80, 83)(81, 100)(82, 106)(85, 98)(86, 101)(88, 114)(94, 95)(97, 99)
c: (1, 2, 4, 7, 12, 20, 32, 48, 66, 84, 102, 21, 33, 49, 67, 85, 103, 117, 128, 137, 143, 54, 72, 90)(3, 5, 9, 15, 25, 39, 57, 75, 93, 110, 16, 26, 40, 58, 76, 94, 111, 123, 133, 141, 45, 63, 81, 99)(6, 10, 17, 27, 42, 60, 78, 96, 113, 125, 35, 52, 70, 88, 106, 120, 131, 139, 144, 38, 56, 74, 92, 109)(8, 13, 22, 34, 51, 69, 87, 105, 119, 130, 28, 43, 61, 79, 97, 114, 126, 135, 142, 31, 47, 65, 83, 101)(11, 18, 29, 44, 62, 80, 98, 115, 127, 136, 41, 59, 77, 95, 112, 124, 134, 24, 37, 55, 73, 91, 108, 122)(14, 23, 36, 53, 71, 89, 107, 121, 132, 140, 50, 68, 86, 104, 118, 129, 138, 19, 30, 46, 64, 82, 100, 116)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 144, 33 ]
144
-1 2 79 90 3
-2 1 4 5 97
-3 1 6 8 97
-4 2 114 7 9
-5 2 13 114 10
-6 11 100 3 14
-7 12 4 15 126
-8 100 3 16 21
-9 22 4 126 17
-10 23 5 116 18
-11 24 115 6 19
-12 25 135 7 20
-13 33 26 5 116
-14 22 115 6 17
-15 34 135 27 7
-16 35 102 28 8
-17 14 36 29 9
-18 37 127 30 10
-19 11 38 139 31
-20 12 39 32 142
-21 33 102 26 8
-22 14 49 40 9
-23 34 27 127 10
-24 11 50 139 41
-25 12 51 42 142
-26 13 52 21 43
-27 44 23 15 53
-28 132 45 16 54
-29 55 46 136 17
-30 56 144 47 18
-31 39 19 141 32
-32 57 48 20 31
-33 13 49 40 21
-34 23 67 58 15
-35 132 16 50 41
-36 136 17 51 42
-37 144 68 59 18
-38 55 46 19 141
-39 69 60 20 31
-40 22 33 70 61
-41 44 24 35 53
-42 25 36 71 62
-43 26 72 63 140
-44 27 73 41 64
-45 143 56 47 28
-46 38 29 74 65
-47 45 57 48 30
-48 66 47 75 32
-49 22 33 67 58
-50 24 35 70 61
-51 25 36 85 76
-52 68 26 59 140
-53 69 27 60 41
-54 143 28 72 63
-55 77 38 29 86
-56 45 73 30 64
-57 78 47 32 87
-58 88 34 79 49
-59 37 71 62 52
-60 89 80 39 53
-61 90 81 50 40
-62 91 59 82 42
-63 74 43 54 65
-64 44 56 92 83
-65 66 46 63 75
-66 48 93 84 65
-67 34 49 85 76
-68 88 79 37 52
-69 103 39 94 53
-70 77 50 40 86
-71 78 59 42 87
-72 90 81 43 54
-73 44 56 104 95
-74 46 91 82 63
-75 48 105 96 65
-76 67 51 106 97
-77 55 89 80 70
-78 57 71 107 98
-79 99 1 68 58
-80 77 100 60 108
-81 92 61 72 83
-82 101 62 74 109
-83 81 93 84 64
-84 66 110 102 83
-85 67 103 94 51
-86 55 70 106 97
-87 111 57 71 117
-88 68 58 104 95
-89 77 60 105 96
-90 99 1 61 72
-91 112 62 74 118
-92 100 81 64 108
-93 66 113 83 119
-94 69 114 85 120
-95 88 73 107 98
-96 121 89 115 75
-97 2 3 86 76
-98 78 122 116 95
-99 79 90 101 109
-100 80 92 6 8
-101 99 110 102 82
-102 101 16 84 21
-103 111 69 117 85
-104 88 114 73 120
-105 89 123 128 75
-106 112 118 86 76
-107 78 113 95 119
-108 80 124 92 129
-109 99 122 82 116
-110 101 125 84 130
-111 103 126 87 131
-112 121 91 115 106
-113 132 93 127 107
-114 4 5 104 94
-115 11 112 14 96
-116 13 10 98 109
-117 123 103 128 87
-118 91 126 106 131
-119 133 93 137 107
-120 124 104 94 129
-121 112 125 96 130
-122 134 138 98 109
-123 135 105 117 139
-124 132 127 108 120
-125 110 121 136 140
-126 111 7 118 9
-127 23 113 124 18
-128 133 137 105 117
-129 135 139 108 120
-130 110 121 143 141
-131 111 134 138 118
-132 35 113 124 28
-133 144 128 119 142
-134 122 136 140 131
-135 12 123 15 129
-136 134 36 125 29
-137 143 128 119 141
-138 122 144 131 142
-139 24 123 19 129
-140 134 125 52 43
-141 38 137 31 130
-142 133 25 138 20
-143 45 137 130 54
-144 133 37 138 30
0

**************