C4graphGraph forms for C4 [ 144, 37 ] = UG(ATD[144,33])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 144, 37 ] = UG(ATD[144,33]).

(I) Following is a form readable by MAGMA:

g:=Graph<144|{ {8, 9}, {90, 91}, {64, 66}, {120, 122}, {65, 67}, {1, 2}, {33, 34}, {4, 7}, {76, 79}, {1, 5}, {121, 125}, {18, 22}, {17, 21}, {3, 7}, {2, 6}, {96, 100}, {72, 77}, {130, 135}, {64, 70}, {128, 134}, {9, 14}, {139, 140}, {74, 77}, {53, 61}, {134, 142}, {81, 88}, {119, 126}, {5, 15}, {36, 46}, {21, 30}, {132, 143}, {131, 136}, {38, 45}, {4, 8}, {71, 75}, {3, 14}, {103, 106}, {2, 12}, {5, 11}, {83, 93}, {2, 13}, {37, 42}, {35, 44}, {41, 57}, {43, 59}, {42, 58}, {33, 48}, {77, 92}, {13, 31}, {44, 62}, {32, 50}, {38, 53}, {47, 60}, {7, 19}, {111, 123}, {10, 30}, {73, 93}, {8, 29}, {13, 24}, {79, 90}, {6, 16}, {15, 25}, {7, 17}, {104, 127}, {135, 144}, {12, 20}, {102, 126}, {32, 56}, {98, 122}, {99, 123}, {100, 124}, {101, 125}, {10, 19}, {106, 115}, {103, 126}, {72, 81}, {96, 121}, {6, 28}, {8, 18}, {105, 114}, {109, 118}, {6, 26}, {78, 82}, {5, 27}, {75, 85}, {98, 124}, {11, 20}, {107, 116}, {70, 102}, {81, 113}, {82, 114}, {83, 115}, {28, 61}, {30, 63}, {65, 96}, {67, 98}, {69, 100}, {80, 113}, {84, 117}, {85, 116}, {87, 118}, {89, 120}, {25, 59}, {71, 101}, {91, 121}, {16, 51}, {29, 62}, {66, 97}, {86, 117}, {14, 42}, {82, 118}, {20, 49}, {16, 54}, {17, 55}, {68, 98}, {86, 112}, {27, 60}, {68, 99}, {18, 56}, {29, 55}, {69, 111}, {64, 108}, {83, 127}, {23, 58}, {28, 49}, {67, 110}, {85, 120}, {14, 32}, {15, 33}, {72, 102}, {73, 103}, {22, 57}, {27, 52}, {66, 109}, {88, 119}, {23, 39}, {31, 47}, {27, 43}, {24, 40}, {74, 123}, {84, 101}, {90, 107}, {93, 108}, {95, 110}, {16, 34}, {26, 40}, {20, 38}, {17, 35}, {19, 39}, {29, 41}, {91, 111}, {92, 105}, {18, 36}, {19, 37}, {71, 112}, {80, 104}, {94, 102}, {13, 52}, {15, 53}, {92, 103}, {95, 99}, {76, 115}, {94, 97}, {50, 119}, {28, 80}, {31, 81}, {45, 125}, {45, 124}, {50, 97}, {30, 75}, {60, 105}, {62, 107}, {9, 94}, {61, 106}, {54, 104}, {31, 64}, {63, 96}, {34, 66}, {45, 77}, {40, 72}, {39, 71}, {38, 70}, {37, 69}, {36, 68}, {35, 67}, {32, 65}, {62, 95}, {60, 93}, {58, 91}, {56, 89}, {55, 86}, {21, 119}, {53, 87}, {12, 111}, {61, 94}, {57, 90}, {52, 87}, {39, 68}, {25, 122}, {52, 80}, {24, 125}, {58, 95}, {40, 78}, {42, 76}, {59, 92}, {3, 106}, {3, 104}, {63, 84}, {54, 88}, {55, 89}, {11, 100}, {46, 65}, {63, 79}, {34, 83}, {36, 85}, {57, 75}, {11, 120}, {37, 86}, {33, 82}, {1, 117}, {4, 113}, {59, 78}, {10, 127}, {48, 70}, {35, 84}, {49, 73}, {54, 78}, {51, 73}, {22, 109}, {49, 74}, {12, 112}, {50, 79}, {56, 69}, {9, 118}, {1, 130}, {4, 128}, {10, 129}, {24, 139}, {22, 129}, {23, 142}, {23, 141}, {25, 133}, {21, 136}, {26, 132}, {26, 133}, {41, 137}, {43, 138}, {44, 142}, {46, 141}, {51, 144}, {47, 140}, {43, 135}, {46, 131}, {41, 134}, {44, 131}, {48, 140}, {51, 143}, {47, 144}, {48, 143}, {74, 138}, {76, 137}, {87, 128}, {88, 129}, {89, 130}, {101, 133}, {109, 141}, {97, 131}, {108, 136}, {110, 139}, {99, 132}, {105, 128}, {110, 135}, {107, 130}, {108, 134}, {123, 144}, {124, 140}, {116, 133}, {127, 141}, {114, 129}, {121, 138}, {112, 132}, {122, 143}, {126, 137}, {113, 136}, {114, 137}, {115, 142}, {116, 138}, {117, 139} }>;

(II) A more general form is to represent the graph as the orbit of {8, 9} under the group generated by the following permutations:

a: (2, 5)(3, 9)(6, 15)(7, 8)(10, 22)(11, 12)(13, 27)(16, 33)(17, 29)(18, 19)(21, 41)(23, 46)(24, 43)(25, 26)(28, 53)(30, 57)(31, 60)(32, 42)(35, 62)(36, 39)(37, 56)(38, 49)(40, 59)(45, 74)(48, 51)(50, 76)(54, 82)(58, 65)(63, 90)(64, 93)(66, 83)(67, 95)(70, 73)(71, 85)(72, 92)(80, 87)(81, 105)(84, 107)(86, 89)(88, 114)(91, 96)(94, 106)(97, 115)(98, 99)(100, 111)(101, 116)(102, 103)(104, 118)(109, 127)(112, 120)(113, 128)(117, 130)(119, 137)(122, 132)(123, 124)(125, 138)(131, 142)(134, 136)(135, 139)(140, 144)
b: (2, 130)(3, 134)(5, 117)(6, 107)(7, 128)(8, 113)(9, 136)(10, 114)(11, 139)(12, 135)(13, 89)(14, 108)(15, 84)(16, 90)(17, 87)(18, 81)(19, 105)(20, 110)(21, 118)(22, 88)(23, 103)(24, 120)(25, 101)(26, 116)(27, 86)(28, 62)(29, 80)(30, 82)(31, 56)(32, 64)(33, 63)(34, 79)(35, 53)(36, 72)(37, 60)(38, 67)(39, 92)(40, 85)(41, 104)(42, 93)(43, 112)(44, 61)(45, 98)(46, 102)(47, 69)(48, 96)(49, 95)(50, 66)(51, 91)(52, 55)(54, 57)(58, 73)(59, 71)(65, 70)(68, 77)(74, 99)(75, 78)(76, 83)(94, 131)(100, 140)(106, 142)(109, 119)(111, 144)(121, 143)(122, 125)(126, 141)(127, 137)(132, 138)
c: (1, 2, 12, 20, 11, 5)(3, 14, 9, 8, 4, 7)(6, 111, 38, 120, 27, 117)(10, 115, 50, 109, 41, 136)(13, 112, 49, 100, 15, 130)(16, 91, 70, 85, 60, 84)(17, 104, 42, 94, 18, 128)(19, 106, 32, 118, 29, 113)(21, 127, 76, 97, 22, 134)(23, 126, 46, 114, 44, 88)(24, 132, 74, 124, 25, 135)(26, 123, 45, 122, 43, 139)(28, 69, 53, 89, 52, 86)(30, 83, 79, 66, 57, 108)(31, 71, 73, 96, 33, 107)(34, 90, 64, 75, 93, 63)(35, 54, 58, 102, 36, 105)(37, 61, 56, 87, 55, 80)(39, 103, 65, 82, 62, 81)(40, 99, 77, 98, 59, 110)(47, 101, 51, 121, 48, 116)(67, 78, 95, 72, 68, 92)(119, 141, 137, 131, 129, 142)(125, 143, 138, 140, 133, 144)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 144, 37 ]
144
-1 2 5 117 130
-2 1 12 13 6
-3 14 104 7 106
-4 113 7 128 8
-5 11 1 15 27
-6 2 26 16 28
-7 3 4 17 19
-8 4 18 29 9
-9 14 94 8 118
-10 127 19 30 129
-11 100 5 20 120
-12 111 2 112 20
-13 2 24 52 31
-14 3 9 42 32
-15 33 25 5 53
-16 34 6 51 54
-17 55 35 7 21
-18 22 56 36 8
-19 37 39 7 10
-20 11 12 38 49
-21 136 17 30 119
-22 57 18 129 109
-23 58 39 141 142
-24 13 125 40 139
-25 122 133 15 59
-26 132 133 6 40
-27 5 60 52 43
-28 80 49 6 61
-29 55 62 8 41
-30 63 75 10 21
-31 13 47 81 64
-32 56 14 50 65
-33 34 15 48 82
-34 33 66 16 83
-35 44 67 17 84
-36 46 68 18 85
-37 69 19 42 86
-38 45 70 20 53
-39 23 68 71 19
-40 78 24 26 72
-41 57 134 137 29
-42 14 58 37 76
-43 135 59 27 138
-44 35 62 131 142
-45 77 124 125 38
-46 36 141 65 131
-47 144 60 140 31
-48 33 143 70 140
-49 28 73 74 20
-50 79 97 119 32
-51 143 144 16 73
-52 13 80 27 87
-53 15 38 61 87
-54 88 78 16 104
-55 89 17 29 86
-56 89 69 18 32
-57 22 90 41 75
-58 23 91 95 42
-59 78 25 92 43
-60 47 27 93 105
-61 28 94 106 53
-62 44 29 95 107
-63 79 84 30 96
-64 66 70 31 108
-65 67 46 96 32
-66 34 64 97 109
-67 110 35 65 98
-68 99 36 39 98
-69 56 100 111 37
-70 102 48 38 64
-71 101 112 39 75
-72 77 102 81 40
-73 103 49 93 51
-74 77 123 49 138
-75 57 71 30 85
-76 79 115 137 42
-77 45 92 72 74
-78 59 82 40 54
-79 90 50 63 76
-80 113 104 28 52
-81 88 113 72 31
-82 33 78 114 118
-83 34 93 115 127
-84 35 101 117 63
-85 36 116 75 120
-86 55 112 37 117
-87 128 52 118 53
-88 81 129 119 54
-89 55 56 130 120
-90 57 79 91 107
-91 121 111 90 58
-92 77 59 103 105
-93 60 83 73 108
-94 102 61 9 97
-95 99 110 58 62
-96 121 100 63 65
-97 66 50 94 131
-98 67 122 68 124
-99 132 68 123 95
-100 11 69 124 96
-101 133 125 71 84
-102 70 126 72 94
-103 92 126 73 106
-104 3 80 127 54
-105 92 114 60 128
-106 3 103 115 61
-107 90 116 62 130
-108 134 136 93 64
-109 22 66 118 141
-110 67 135 95 139
-111 12 123 69 91
-112 132 12 71 86
-113 80 4 81 136
-114 82 137 105 129
-115 83 106 76 142
-116 133 138 85 107
-117 1 84 139 86
-118 82 9 87 109
-119 88 126 50 21
-120 11 89 122 85
-121 91 125 138 96
-122 143 25 98 120
-123 99 111 144 74
-124 45 100 140 98
-125 121 45 24 101
-126 102 103 137 119
-127 104 83 141 10
-128 134 4 105 87
-129 22 88 114 10
-130 1 89 135 107
-131 44 46 136 97
-132 99 143 112 26
-133 101 25 26 116
-134 128 41 108 142
-135 110 144 130 43
-136 113 108 21 131
-137 114 126 41 76
-138 121 116 74 43
-139 110 24 117 140
-140 47 124 48 139
-141 23 46 127 109
-142 44 23 134 115
-143 132 122 48 51
-144 123 47 135 51
0

**************