C4graphGraph forms for C4 [ 144, 39 ] = UG(ATD[144,39])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 144, 39 ] = UG(ATD[144,39]).

(I) Following is a form readable by MAGMA:

g:=Graph<144|{ {24, 25}, {60, 61}, {68, 69}, {141, 143}, {1, 2}, {1, 5}, {3, 7}, {2, 6}, {65, 68}, {80, 85}, {123, 124}, {82, 90}, {116, 125}, {118, 127}, {71, 77}, {101, 111}, {96, 107}, {134, 141}, {101, 110}, {2, 14}, {4, 8}, {3, 15}, {22, 27}, {32, 46}, {135, 137}, {113, 126}, {11, 27}, {98, 115}, {104, 121}, {107, 122}, {35, 49}, {130, 144}, {11, 24}, {66, 81}, {105, 122}, {108, 127}, {4, 16}, {7, 19}, {6, 18}, {5, 17}, {78, 90}, {96, 116}, {12, 25}, {32, 53}, {104, 125}, {13, 26}, {36, 51}, {98, 117}, {105, 126}, {106, 125}, {4, 28}, {38, 62}, {32, 58}, {44, 54}, {6, 29}, {10, 17}, {8, 20}, {10, 22}, {9, 21}, {33, 60}, {9, 23}, {35, 61}, {67, 93}, {64, 95}, {78, 81}, {10, 42}, {8, 41}, {70, 103}, {94, 127}, {3, 33}, {19, 49}, {18, 48}, {15, 45}, {14, 44}, {5, 39}, {65, 99}, {69, 102}, {72, 108}, {73, 109}, {74, 110}, {72, 109}, {20, 50}, {31, 57}, {30, 56}, {21, 51}, {66, 100}, {67, 101}, {12, 43}, {28, 59}, {19, 52}, {16, 55}, {31, 54}, {29, 55}, {64, 106}, {92, 118}, {13, 38}, {25, 52}, {27, 54}, {23, 57}, {7, 40}, {26, 53}, {71, 104}, {20, 36}, {29, 45}, {70, 118}, {66, 115}, {83, 98}, {30, 44}, {31, 45}, {11, 63}, {17, 37}, {67, 119}, {76, 120}, {73, 124}, {89, 108}, {11, 61}, {20, 34}, {19, 37}, {71, 113}, {76, 123}, {84, 99}, {2, 58}, {79, 119}, {12, 53}, {73, 115}, {77, 119}, {3, 56}, {18, 41}, {75, 119}, {82, 110}, {23, 42}, {16, 46}, {21, 43}, {17, 47}, {82, 108}, {88, 102}, {78, 113}, {6, 70}, {50, 114}, {49, 113}, {16, 80}, {15, 79}, {14, 78}, {9, 72}, {24, 90}, {35, 97}, {30, 92}, {9, 74}, {57, 122}, {60, 127}, {8, 76}, {23, 83}, {22, 82}, {21, 81}, {56, 124}, {59, 126}, {58, 125}, {60, 123}, {62, 121}, {1, 73}, {43, 99}, {15, 69}, {40, 99}, {24, 84}, {55, 123}, {27, 87}, {26, 86}, {25, 85}, {13, 64}, {33, 111}, {40, 120}, {48, 96}, {41, 121}, {36, 117}, {56, 105}, {43, 122}, {51, 97}, {18, 65}, {30, 74}, {63, 106}, {61, 107}, {63, 105}, {53, 98}, {4, 89}, {59, 102}, {7, 88}, {47, 112}, {39, 120}, {62, 97}, {1, 101}, {48, 85}, {50, 87}, {49, 86}, {28, 116}, {46, 68}, {38, 77}, {5, 104}, {50, 95}, {13, 96}, {10, 100}, {42, 68}, {28, 115}, {45, 66}, {34, 77}, {31, 112}, {47, 95}, {54, 71}, {59, 74}, {44, 94}, {46, 92}, {40, 93}, {51, 70}, {42, 93}, {48, 72}, {52, 76}, {34, 88}, {35, 89}, {37, 94}, {47, 84}, {39, 92}, {63, 67}, {26, 103}, {38, 91}, {12, 114}, {37, 91}, {36, 90}, {33, 95}, {52, 75}, {14, 134}, {22, 129}, {29, 130}, {39, 133}, {32, 131}, {41, 132}, {34, 141}, {58, 142}, {57, 128}, {55, 140}, {62, 128}, {79, 140}, {64, 137}, {79, 134}, {75, 129}, {65, 143}, {69, 139}, {89, 137}, {80, 129}, {83, 129}, {91, 136}, {81, 132}, {94, 139}, {83, 133}, {87, 128}, {85, 141}, {86, 142}, {84, 142}, {75, 144}, {80, 139}, {87, 140}, {88, 132}, {86, 139}, {91, 133}, {93, 130}, {103, 134}, {110, 143}, {97, 131}, {100, 135}, {106, 143}, {109, 136}, {111, 136}, {111, 135}, {100, 142}, {102, 137}, {103, 136}, {117, 135}, {112, 132}, {118, 128}, {124, 138}, {114, 133}, {114, 138}, {117, 140}, {112, 138}, {107, 144}, {121, 130}, {120, 131}, {109, 144}, {126, 131}, {116, 138} }>;

(II) A more general form is to represent the graph as the orbit of {24, 25} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 11)(6, 17)(7, 21)(8, 24)(10, 29)(12, 34)(14, 39)(15, 23)(16, 27)(18, 47)(19, 51)(20, 25)(22, 55)(26, 38)(28, 63)(31, 68)(32, 71)(33, 72)(36, 52)(37, 70)(40, 81)(41, 84)(42, 45)(43, 88)(44, 92)(46, 54)(48, 95)(49, 97)(50, 85)(53, 77)(56, 74)(57, 69)(58, 104)(59, 105)(60, 108)(61, 89)(62, 86)(64, 96)(65, 112)(66, 93)(67, 115)(73, 101)(75, 117)(76, 90)(78, 120)(79, 83)(80, 87)(82, 123)(91, 103)(94, 118)(98, 119)(99, 132)(100, 130)(102, 122)(106, 116)(107, 137)(109, 111)(110, 124)(113, 131)(114, 141)(121, 142)(128, 139)(129, 140)(133, 134)(135, 144)(138, 143)
b: (2, 73)(3, 54)(4, 51)(5, 101)(6, 115)(7, 27)(8, 36)(9, 46)(10, 93)(11, 19)(12, 85)(14, 124)(15, 31)(16, 21)(17, 67)(18, 98)(22, 40)(23, 68)(24, 52)(26, 96)(28, 70)(29, 66)(32, 72)(33, 71)(34, 50)(37, 63)(38, 64)(39, 110)(41, 117)(43, 80)(44, 56)(47, 119)(48, 53)(49, 61)(55, 81)(57, 69)(58, 109)(59, 118)(60, 113)(62, 137)(65, 83)(74, 92)(75, 84)(76, 90)(77, 95)(78, 123)(79, 112)(82, 120)(86, 107)(87, 88)(89, 97)(91, 106)(94, 105)(99, 129)(100, 130)(102, 128)(103, 116)(104, 111)(108, 131)(114, 141)(121, 135)(122, 139)(125, 136)(126, 127)(132, 140)(133, 143)(134, 138)(142, 144)
c: (1, 2)(3, 21)(4, 27)(5, 58)(6, 101)(7, 43)(8, 11)(9, 15)(10, 46)(12, 19)(13, 38)(14, 73)(16, 22)(17, 32)(18, 67)(20, 61)(23, 69)(24, 76)(25, 52)(26, 91)(28, 54)(29, 110)(30, 66)(31, 59)(33, 51)(34, 107)(35, 50)(36, 60)(37, 53)(39, 142)(40, 99)(41, 63)(42, 68)(44, 115)(45, 74)(47, 131)(48, 119)(49, 114)(55, 82)(56, 81)(57, 102)(62, 64)(65, 93)(70, 111)(71, 116)(72, 79)(75, 85)(77, 96)(78, 124)(80, 129)(83, 139)(84, 120)(86, 133)(87, 89)(88, 122)(90, 123)(92, 100)(94, 98)(95, 97)(103, 136)(104, 125)(105, 132)(106, 121)(108, 140)(109, 134)(112, 126)(113, 138)(117, 127)(118, 135)(128, 137)(130, 143)(141, 144)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 144, 39 ]
144
-1 2 101 5 73
-2 1 14 58 6
-3 33 56 15 7
-4 89 16 28 8
-5 1 104 17 39
-6 2 70 18 29
-7 88 3 40 19
-8 4 41 20 76
-9 23 72 74 21
-10 22 100 17 42
-11 24 27 61 63
-12 25 114 53 43
-13 26 38 96 64
-14 44 78 2 134
-15 45 79 3 69
-16 55 46 80 4
-17 47 37 5 10
-18 48 6 41 65
-19 37 49 7 52
-20 34 36 50 8
-21 81 51 9 43
-22 27 82 129 10
-23 57 83 9 42
-24 11 90 25 84
-25 12 24 52 85
-26 13 103 53 86
-27 11 22 54 87
-28 4 59 115 116
-29 55 45 6 130
-30 44 56 92 74
-31 45 57 112 54
-32 46 58 53 131
-33 111 3 60 95
-34 77 88 20 141
-35 89 49 61 97
-36 90 51 117 20
-37 91 17 94 19
-38 77 13 91 62
-39 133 92 5 120
-40 99 93 7 120
-41 121 132 18 8
-42 23 68 93 10
-43 99 12 122 21
-44 14 94 30 54
-45 66 15 29 31
-46 68 92 16 32
-47 112 17 84 95
-48 72 18 85 96
-49 35 113 19 86
-50 114 95 20 87
-51 36 70 97 21
-52 25 19 75 76
-53 12 26 32 98
-54 44 27 71 31
-55 123 16 29 140
-56 3 124 105 30
-57 23 122 128 31
-58 2 125 32 142
-59 102 126 28 74
-60 33 123 61 127
-61 11 35 60 107
-62 121 38 128 97
-63 11 67 105 106
-64 13 137 95 106
-65 99 143 68 18
-66 45 100 81 115
-67 101 93 63 119
-68 46 69 42 65
-69 68 102 15 139
-70 103 6 51 118
-71 77 113 104 54
-72 48 9 108 109
-73 1 124 115 109
-74 110 59 30 9
-75 144 52 129 119
-76 123 8 52 120
-77 34 38 71 119
-78 90 14 113 81
-79 134 15 140 119
-80 16 139 85 129
-81 66 132 78 21
-82 22 110 90 108
-83 23 133 129 98
-84 99 24 47 142
-85 25 80 48 141
-86 26 49 139 142
-87 27 50 128 140
-88 132 34 102 7
-89 35 4 137 108
-90 78 24 36 82
-91 133 37 136 38
-92 46 39 30 118
-93 67 40 42 130
-94 44 37 127 139
-95 33 47 50 64
-96 13 48 116 107
-97 35 51 62 131
-98 115 83 117 53
-99 40 84 43 65
-100 66 135 10 142
-101 110 1 67 111
-102 88 69 59 137
-103 134 26 70 136
-104 121 125 5 71
-105 56 122 126 63
-106 143 125 63 64
-107 122 144 61 96
-108 89 82 72 127
-109 144 136 72 73
-110 143 101 82 74
-111 33 101 135 136
-112 132 47 138 31
-113 78 49 71 126
-114 12 133 50 138
-115 66 28 73 98
-116 125 28 138 96
-117 36 135 140 98
-118 70 92 127 128
-119 77 67 79 75
-120 39 40 76 131
-121 104 62 41 130
-122 57 105 107 43
-123 55 124 60 76
-124 56 123 138 73
-125 58 104 116 106
-126 113 59 105 131
-127 60 94 118 108
-128 57 62 118 87
-129 22 80 83 75
-130 121 144 93 29
-131 126 97 32 120
-132 88 112 81 41
-133 91 114 39 83
-134 79 14 103 141
-135 100 111 137 117
-136 111 91 103 109
-137 89 102 135 64
-138 112 124 114 116
-139 69 80 94 86
-140 55 79 117 87
-141 143 34 134 85
-142 100 58 84 86
-143 110 106 141 65
-144 107 75 130 109
0

**************