[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 144, 39 ]. See Glossary for some
detail.
UG(ATD[144, 39]) = UG(ATD[144, 40]) = UG(ATD[144, 41])
= HC(F 24) = MG(Rmap(144, 39) { 6, 12| 6}_ 12) = DG(Rmap(144, 39) { 6, 12|
6}_ 12)
= MG(Rmap(144, 40) { 6, 12| 12}_ 12) = DG(Rmap(144, 40) { 6, 12| 12}_ 12) =
DG(Rmap(144, 48) { 12, 6| 6}_ 12)
= DG(Rmap(144, 49) { 12, 6| 12}_ 12) = HC(Rmap( 36, 5) { 6, 3| 6}_ 12) =
BGCG(R_ 12( 8, 7), C_ 3, 4)
= BGCG(Pr_ 12( 1, 1, 5, 5); K2;2) = AT[144, 26]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 1 | - | - | - | - | - | - | - | - | 0 5 | - |
| 2 | 0 11 | - | 0 | 0 | - | - | - | - | - | - | - | - |
| 3 | - | 0 | - | - | 5 | 5 | - | 5 | - | - | - | - |
| 4 | - | 0 | - | - | 2 | 1 | - | 4 | - | - | - | - |
| 5 | - | - | 7 | 10 | - | - | - | - | 0 | - | - | 0 |
| 6 | - | - | 7 | 11 | - | - | 6 7 | - | - | - | - | - |
| 7 | - | - | - | - | - | 5 6 | - | - | - | 2 7 | - | - |
| 8 | - | - | 7 | 8 | - | - | - | - | 6 | - | - | 4 |
| 9 | - | - | - | - | 0 | - | - | 6 | - | 6 | 8 | - |
| 10 | - | - | - | - | - | - | 5 10 | - | 6 | - | - | 9 |
| 11 | 0 7 | - | - | - | - | - | - | - | 4 | - | - | 11 |
| 12 | - | - | - | - | 0 | - | - | 8 | - | 3 | 1 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | - | 0 | 0 | - | - | - | - | 0 | - | - |
| 2 | 0 | - | - | - | 1 | - | 0 | - | 0 | - | - | - |
| 3 | - | - | - | 2 | - | 0 | - | 0 | 5 | - | - | - |
| 4 | 0 | - | 10 | - | - | - | - | - | - | 5 | - | 0 |
| 5 | 0 | 11 | - | - | - | - | - | - | 8 | - | 11 | - |
| 6 | - | - | 0 | - | - | - | 2 | 5 | - | - | 7 | - |
| 7 | - | 0 | - | - | - | 10 | - | - | - | - | 4 | 3 |
| 8 | - | - | 0 | - | - | 7 | - | - | 8 | 3 | - | - |
| 9 | - | 0 | 7 | - | 4 | - | - | 4 | - | - | - | - |
| 10 | 0 | - | - | 7 | - | - | - | 9 | - | - | - | 4 |
| 11 | - | - | - | - | 1 | 5 | 8 | - | - | - | - | 2 |
| 12 | - | - | - | 0 | - | - | 9 | - | - | 8 | 10 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 11 | - | 0 | - | - | - | - | - | - | 0 | - | - |
| 2 | - | - | - | 0 10 | 0 | 0 | - | - | - | - | - | - |
| 3 | 0 | - | - | - | - | 11 | - | 0 | - | - | - | 0 |
| 4 | - | 0 2 | - | - | - | - | - | 4 | 0 | - | - | - |
| 5 | - | 0 | - | - | - | 9 | 6 | - | - | 3 | - | - |
| 6 | - | 0 | 1 | - | 3 | - | 10 | - | - | - | - | - |
| 7 | - | - | - | - | 6 | 2 | - | - | - | - | 7 9 | - |
| 8 | - | - | 0 | 8 | - | - | - | - | 3 | - | 9 | - |
| 9 | - | - | - | 0 | - | - | - | 9 | - | 2 | 9 | - |
| 10 | 0 | - | - | - | 9 | - | - | - | 10 | - | - | 8 |
| 11 | - | - | - | - | - | - | 3 5 | 3 | 3 | - | - | - |
| 12 | - | - | 0 | - | - | - | - | - | - | 4 | - | 5 7 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 11 | - | - | 0 | - | 0 | - | - | - | - | - | - |
| 2 | - | - | 0 10 | - | - | 2 | - | 0 | - | - | - | - |
| 3 | - | 0 2 | - | 5 | 1 | - | - | - | - | - | - | - |
| 4 | 0 | - | 7 | - | - | - | - | - | 0 | 0 | - | - |
| 5 | - | - | 11 | - | - | - | 7 | - | 8 | - | - | 7 |
| 6 | 0 | 10 | - | - | - | - | - | - | - | 8 | 5 | - |
| 7 | - | - | - | - | 5 | - | 1 11 | 3 | - | - | - | - |
| 8 | - | 0 | - | - | - | - | 9 | - | - | - | 3 | 1 |
| 9 | - | - | - | 0 | 4 | - | - | - | 5 7 | - | - | - |
| 10 | - | - | - | 0 | - | 4 | - | - | - | - | - | 2 4 |
| 11 | - | - | - | - | - | 7 | - | 9 | - | - | 5 7 | - |
| 12 | - | - | - | - | 5 | - | - | 11 | - | 8 10 | - | - |