C4graphGraph forms for C4 [ 145, 2 ] = C_145(1,17)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 145, 2 ] = C_145(1,17).

(I) Following is a form readable by MAGMA:

g:=Graph<145|{ {2, 3}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {1, 2}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {3, 4}, {139, 140}, {131, 132}, {123, 124}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {7, 8}, {135, 136}, {119, 120}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {2, 19}, {128, 145}, {66, 83}, {64, 81}, {46, 63}, {44, 61}, {42, 59}, {40, 57}, {38, 55}, {36, 53}, {4, 21}, {6, 23}, {8, 25}, {10, 27}, {12, 29}, {14, 31}, {32, 49}, {34, 51}, {68, 85}, {70, 87}, {72, 89}, {74, 91}, {76, 93}, {78, 95}, {96, 113}, {98, 115}, {100, 117}, {102, 119}, {104, 121}, {106, 123}, {108, 125}, {110, 127}, {1, 18}, {65, 82}, {45, 62}, {41, 58}, {37, 54}, {5, 22}, {9, 26}, {13, 30}, {33, 50}, {69, 86}, {73, 90}, {77, 94}, {97, 114}, {101, 118}, {105, 122}, {109, 126}, {3, 20}, {43, 60}, {11, 28}, {35, 52}, {67, 84}, {75, 92}, {99, 116}, {107, 124}, {7, 24}, {143, 144}, {47, 48}, {39, 56}, {15, 16}, {71, 88}, {79, 80}, {103, 120}, {111, 112}, {15, 32}, {31, 48}, {79, 96}, {95, 112}, {16, 33}, {18, 35}, {20, 37}, {22, 39}, {24, 41}, {26, 43}, {28, 45}, {30, 47}, {80, 97}, {82, 99}, {84, 101}, {86, 103}, {88, 105}, {90, 107}, {92, 109}, {94, 111}, {17, 34}, {21, 38}, {25, 42}, {29, 46}, {81, 98}, {85, 102}, {89, 106}, {93, 110}, {19, 36}, {27, 44}, {83, 100}, {91, 108}, {23, 40}, {31, 32}, {87, 104}, {95, 96}, {47, 64}, {63, 80}, {48, 65}, {62, 79}, {60, 77}, {58, 75}, {56, 73}, {54, 71}, {52, 69}, {50, 67}, {49, 66}, {61, 78}, {57, 74}, {53, 70}, {51, 68}, {59, 76}, {55, 72}, {63, 64}, {1, 129}, {2, 130}, {3, 131}, {4, 132}, {5, 133}, {6, 134}, {7, 135}, {8, 136}, {9, 137}, {10, 138}, {11, 139}, {12, 140}, {13, 141}, {14, 142}, {15, 143}, {16, 144}, {17, 145}, {1, 145}, {111, 128}, {127, 144}, {112, 129}, {126, 143}, {124, 141}, {122, 139}, {120, 137}, {114, 131}, {116, 133}, {118, 135}, {113, 130}, {125, 142}, {121, 138}, {117, 134}, {115, 132}, {123, 140}, {119, 136}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 129, 145, 18)(3, 112, 144, 35)(4, 95, 143, 52)(5, 78, 142, 69)(6, 61, 141, 86)(7, 44, 140, 103)(8, 27, 139, 120)(9, 10, 138, 137)(11, 121, 136, 26)(12, 104, 135, 43)(13, 87, 134, 60)(14, 70, 133, 77)(15, 53, 132, 94)(16, 36, 131, 111)(17, 19, 130, 128)(20, 113, 127, 34)(21, 96, 126, 51)(22, 79, 125, 68)(23, 62, 124, 85)(24, 45, 123, 102)(25, 28, 122, 119)(29, 105, 118, 42)(30, 88, 117, 59)(31, 71, 116, 76)(32, 54, 115, 93)(33, 37, 114, 110)(38, 97, 109, 50)(39, 80, 108, 67)(40, 63, 107, 84)(41, 46, 106, 101)(47, 89, 100, 58)(48, 72, 99, 75)(49, 55, 98, 92)(56, 81, 91, 66)(57, 64, 90, 83)(65, 73, 82, 74)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 145, 2 ]
145
-1 2 145 18 129
-2 1 3 19 130
-3 2 4 20 131
-4 132 3 5 21
-5 22 133 4 6
-6 23 134 5 7
-7 24 135 6 8
-8 25 136 7 9
-9 26 137 8 10
-10 11 27 138 9
-11 12 28 139 10
-12 11 13 29 140
-13 12 14 30 141
-14 13 15 31 142
-15 143 14 16 32
-16 33 144 15 17
-17 34 145 16 18
-18 1 35 17 19
-19 2 36 18 20
-20 3 37 19 21
-21 22 4 38 20
-22 23 5 39 21
-23 22 24 6 40
-24 23 25 7 41
-25 24 26 8 42
-26 25 27 9 43
-27 44 26 28 10
-28 11 45 27 29
-29 12 46 28 30
-30 13 47 29 31
-31 14 48 30 32
-32 33 15 49 31
-33 34 16 50 32
-34 33 35 17 51
-35 34 36 18 52
-36 35 37 19 53
-37 36 38 20 54
-38 55 37 39 21
-39 22 56 38 40
-40 23 57 39 41
-41 24 58 40 42
-42 25 59 41 43
-43 44 26 60 42
-44 45 27 61 43
-45 44 46 28 62
-46 45 47 29 63
-47 46 48 30 64
-48 47 49 31 65
-49 66 48 50 32
-50 33 67 49 51
-51 34 68 50 52
-52 35 69 51 53
-53 36 70 52 54
-54 55 37 71 53
-55 56 38 72 54
-56 55 57 39 73
-57 56 58 40 74
-58 57 59 41 75
-59 58 60 42 76
-60 77 59 61 43
-61 44 78 60 62
-62 45 79 61 63
-63 46 80 62 64
-64 47 81 63 65
-65 66 48 82 64
-66 67 49 83 65
-67 66 68 50 84
-68 67 69 51 85
-69 68 70 52 86
-70 69 71 53 87
-71 88 70 72 54
-72 55 89 71 73
-73 56 90 72 74
-74 57 91 73 75
-75 58 92 74 76
-76 77 59 93 75
-77 78 60 94 76
-78 77 79 61 95
-79 78 80 62 96
-80 79 81 63 97
-81 80 82 64 98
-82 99 81 83 65
-83 66 100 82 84
-84 67 101 83 85
-85 68 102 84 86
-86 69 103 85 87
-87 88 70 104 86
-88 89 71 105 87
-89 88 90 72 106
-90 89 91 73 107
-91 90 92 74 108
-92 91 93 75 109
-93 110 92 94 76
-94 77 111 93 95
-95 78 112 94 96
-96 79 113 95 97
-97 80 114 96 98
-98 99 81 115 97
-99 100 82 116 98
-100 99 101 83 117
-101 100 102 84 118
-102 101 103 85 119
-103 102 104 86 120
-104 121 103 105 87
-105 88 122 104 106
-106 89 123 105 107
-107 90 124 106 108
-108 91 125 107 109
-109 110 92 126 108
-110 111 93 127 109
-111 110 112 94 128
-112 111 113 95 129
-113 112 114 96 130
-114 113 115 97 131
-115 132 114 116 98
-116 99 133 115 117
-117 100 134 116 118
-118 101 135 117 119
-119 102 136 118 120
-120 121 103 137 119
-121 122 104 138 120
-122 121 123 105 139
-123 122 124 106 140
-124 123 125 107 141
-125 124 126 108 142
-126 143 125 127 109
-127 110 144 126 128
-128 111 145 127 129
-129 1 112 128 130
-130 2 113 129 131
-131 132 3 114 130
-132 133 4 115 131
-133 132 134 5 116
-134 133 135 6 117
-135 134 136 7 118
-136 135 137 8 119
-137 136 138 9 120
-138 121 137 139 10
-139 11 122 138 140
-140 12 123 139 141
-141 13 124 140 142
-142 143 14 125 141
-143 144 15 126 142
-144 143 145 16 127
-145 1 144 17 128
0

**************