C4graphGraph forms for C4 [ 147, 1 ] = C_147(1,50)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 147, 1 ] = C_147(1,50).

(I) Following is a form readable by MAGMA:

g:=Graph<147|{ {2, 3}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {1, 2}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {3, 4}, {139, 140}, {131, 132}, {123, 124}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {7, 8}, {135, 136}, {119, 120}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {1, 51}, {4, 54}, {5, 55}, {8, 58}, {9, 59}, {12, 62}, {13, 63}, {64, 114}, {65, 115}, {68, 118}, {69, 119}, {72, 122}, {73, 123}, {76, 126}, {77, 127}, {2, 52}, {3, 53}, {10, 60}, {11, 61}, {66, 116}, {67, 117}, {74, 124}, {75, 125}, {6, 56}, {7, 57}, {70, 120}, {71, 121}, {31, 32}, {95, 96}, {14, 64}, {47, 97}, {46, 96}, {15, 65}, {30, 80}, {31, 81}, {62, 112}, {63, 113}, {16, 66}, {53, 103}, {52, 102}, {49, 99}, {48, 98}, {17, 67}, {20, 70}, {21, 71}, {24, 74}, {25, 75}, {28, 78}, {29, 79}, {56, 106}, {57, 107}, {60, 110}, {61, 111}, {18, 68}, {51, 101}, {50, 100}, {19, 69}, {26, 76}, {27, 77}, {58, 108}, {59, 109}, {22, 72}, {23, 73}, {54, 104}, {55, 105}, {2, 99}, {4, 101}, {6, 103}, {8, 105}, {10, 107}, {12, 109}, {14, 111}, {16, 113}, {18, 115}, {20, 117}, {22, 119}, {24, 121}, {26, 123}, {28, 125}, {30, 127}, {1, 98}, {5, 102}, {9, 106}, {13, 110}, {17, 114}, {21, 118}, {25, 122}, {29, 126}, {3, 100}, {11, 108}, {19, 116}, {27, 124}, {7, 104}, {23, 120}, {32, 82}, {45, 95}, {44, 94}, {41, 91}, {40, 90}, {37, 87}, {36, 86}, {33, 83}, {34, 84}, {43, 93}, {42, 92}, {35, 85}, {38, 88}, {39, 89}, {15, 112}, {63, 64}, {1, 147}, {31, 128}, {32, 129}, {50, 147}, {48, 145}, {46, 143}, {44, 141}, {42, 139}, {40, 137}, {38, 135}, {36, 133}, {34, 131}, {33, 130}, {49, 146}, {45, 142}, {41, 138}, {37, 134}, {35, 132}, {43, 140}, {39, 136}, {47, 144}, {78, 128}, {79, 129}, {94, 144}, {95, 145}, {80, 130}, {81, 131}, {84, 134}, {85, 135}, {88, 138}, {89, 139}, {92, 142}, {93, 143}, {82, 132}, {83, 133}, {90, 140}, {91, 141}, {86, 136}, {87, 137}, {96, 146}, {97, 147}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147)
b: (2, 51)(3, 101)(5, 54)(6, 104)(8, 57)(9, 107)(11, 60)(12, 110)(14, 63)(15, 113)(17, 66)(18, 116)(20, 69)(21, 119)(23, 72)(24, 122)(26, 75)(27, 125)(29, 78)(30, 128)(32, 81)(33, 131)(35, 84)(36, 134)(38, 87)(39, 137)(41, 90)(42, 140)(44, 93)(45, 143)(47, 96)(48, 146)(50, 99)(53, 102)(56, 105)(59, 108)(62, 111)(65, 114)(68, 117)(71, 120)(74, 123)(77, 126)(80, 129)(83, 132)(86, 135)(89, 138)(92, 141)(95, 144)(98, 147)
c: (2, 98)(3, 48)(4, 145)(5, 95)(6, 45)(7, 142)(8, 92)(9, 42)(10, 139)(11, 89)(12, 39)(13, 136)(14, 86)(15, 36)(16, 133)(17, 83)(18, 33)(19, 130)(20, 80)(21, 30)(22, 127)(23, 77)(24, 27)(25, 124)(26, 74)(28, 121)(29, 71)(31, 118)(32, 68)(34, 115)(35, 65)(37, 112)(38, 62)(40, 109)(41, 59)(43, 106)(44, 56)(46, 103)(47, 53)(49, 100)(51, 147)(52, 97)(54, 144)(55, 94)(57, 141)(58, 91)(60, 138)(61, 88)(63, 135)(64, 85)(66, 132)(67, 82)(69, 129)(70, 79)(72, 126)(73, 76)(75, 123)(78, 120)(81, 117)(84, 114)(87, 111)(90, 108)(93, 105)(96, 102)(101, 146)(104, 143)(107, 140)(110, 137)(113, 134)(116, 131)(119, 128)(122, 125)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 147, 1 ]
147
-1 2 147 51 98
-2 99 1 3 52
-3 100 2 4 53
-4 101 3 5 54
-5 55 102 4 6
-6 56 103 5 7
-7 57 104 6 8
-8 58 105 7 9
-9 59 106 8 10
-10 11 60 107 9
-11 12 61 108 10
-12 11 13 62 109
-13 110 12 14 63
-14 111 13 15 64
-15 112 14 16 65
-16 66 113 15 17
-17 67 114 16 18
-18 68 115 17 19
-19 69 116 18 20
-20 70 117 19 21
-21 22 71 118 20
-22 23 72 119 21
-23 22 24 73 120
-24 121 23 25 74
-25 122 24 26 75
-26 123 25 27 76
-27 77 124 26 28
-28 78 125 27 29
-29 79 126 28 30
-30 80 127 29 31
-31 81 128 30 32
-32 33 82 129 31
-33 34 83 130 32
-34 33 35 84 131
-35 132 34 36 85
-36 133 35 37 86
-37 134 36 38 87
-38 88 135 37 39
-39 89 136 38 40
-40 90 137 39 41
-41 91 138 40 42
-42 92 139 41 43
-43 44 93 140 42
-44 45 94 141 43
-45 44 46 95 142
-46 143 45 47 96
-47 144 46 48 97
-48 145 47 49 98
-49 99 146 48 50
-50 100 147 49 51
-51 1 101 50 52
-52 2 102 51 53
-53 3 103 52 54
-54 55 4 104 53
-55 56 5 105 54
-56 55 57 6 106
-57 56 58 7 107
-58 57 59 8 108
-59 58 60 9 109
-60 110 59 61 10
-61 11 111 60 62
-62 12 112 61 63
-63 13 113 62 64
-64 14 114 63 65
-65 66 15 115 64
-66 67 16 116 65
-67 66 68 17 117
-68 67 69 18 118
-69 68 70 19 119
-70 69 71 20 120
-71 121 70 72 21
-72 22 122 71 73
-73 23 123 72 74
-74 24 124 73 75
-75 25 125 74 76
-76 77 26 126 75
-77 78 27 127 76
-78 77 79 28 128
-79 78 80 29 129
-80 79 81 30 130
-81 80 82 31 131
-82 132 81 83 32
-83 33 133 82 84
-84 34 134 83 85
-85 35 135 84 86
-86 36 136 85 87
-87 88 37 137 86
-88 89 38 138 87
-89 88 90 39 139
-90 89 91 40 140
-91 90 92 41 141
-92 91 93 42 142
-93 143 92 94 43
-94 44 144 93 95
-95 45 145 94 96
-96 46 146 95 97
-97 47 147 96 98
-98 99 1 48 97
-99 100 2 49 98
-100 99 101 3 50
-101 100 102 4 51
-102 101 103 5 52
-103 102 104 6 53
-104 103 105 7 54
-105 55 104 106 8
-106 56 105 107 9
-107 57 106 108 10
-108 11 58 107 109
-109 110 12 59 108
-110 111 13 60 109
-111 110 112 14 61
-112 111 113 15 62
-113 112 114 16 63
-114 113 115 17 64
-115 114 116 18 65
-116 66 115 117 19
-117 67 116 118 20
-118 68 117 119 21
-119 22 69 118 120
-120 121 23 70 119
-121 122 24 71 120
-122 121 123 25 72
-123 122 124 26 73
-124 123 125 27 74
-125 124 126 28 75
-126 125 127 29 76
-127 77 126 128 30
-128 78 127 129 31
-129 79 128 130 32
-130 33 80 129 131
-131 132 34 81 130
-132 133 35 82 131
-133 132 134 36 83
-134 133 135 37 84
-135 134 136 38 85
-136 135 137 39 86
-137 136 138 40 87
-138 88 137 139 41
-139 89 138 140 42
-140 90 139 141 43
-141 44 91 140 142
-142 143 45 92 141
-143 144 46 93 142
-144 143 145 47 94
-145 144 146 48 95
-146 145 147 49 96
-147 1 146 50 97
0

**************