C4graphGraph forms for C4 [ 147, 2 ] = {4,4}_<14,7>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 147, 2 ] = {4,4}_<14,7>.

(I) Following is a form readable by MAGMA:

g:=Graph<147|{ {2, 3}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {128, 129}, {1, 2}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {3, 4}, {139, 140}, {131, 132}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7, 8}, {135, 136}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {1, 21}, {64, 84}, {43, 63}, {106, 126}, {2, 23}, {72, 93}, {66, 87}, {64, 85}, {42, 63}, {8, 29}, {10, 31}, {32, 53}, {34, 55}, {40, 61}, {74, 95}, {96, 117}, {98, 119}, {104, 125}, {106, 127}, {1, 22}, {65, 86}, {41, 62}, {9, 30}, {33, 54}, {73, 94}, {97, 118}, {105, 126}, {3, 24}, {71, 92}, {67, 88}, {7, 28}, {35, 56}, {39, 60}, {99, 120}, {103, 124}, {4, 25}, {70, 91}, {68, 89}, {6, 27}, {36, 57}, {38, 59}, {100, 121}, {102, 123}, {5, 26}, {143, 144}, {69, 90}, {47, 48}, {15, 16}, {37, 58}, {79, 80}, {101, 122}, {111, 112}, {11, 32}, {15, 36}, {27, 48}, {31, 52}, {75, 96}, {79, 100}, {91, 112}, {95, 116}, {12, 33}, {14, 35}, {28, 49}, {30, 51}, {76, 97}, {78, 99}, {92, 113}, {94, 115}, {13, 34}, {29, 50}, {77, 98}, {93, 114}, {16, 37}, {18, 39}, {24, 45}, {26, 47}, {80, 101}, {82, 103}, {88, 109}, {90, 111}, {17, 38}, {25, 46}, {81, 102}, {89, 110}, {19, 40}, {23, 44}, {83, 104}, {87, 108}, {22, 42}, {85, 105}, {20, 41}, {22, 43}, {84, 105}, {86, 107}, {21, 42}, {31, 32}, {85, 106}, {95, 96}, {43, 64}, {63, 84}, {59, 80}, {47, 68}, {44, 65}, {62, 83}, {60, 81}, {46, 67}, {45, 66}, {61, 82}, {15, 127}, {48, 69}, {58, 79}, {56, 77}, {50, 71}, {49, 70}, {57, 78}, {51, 72}, {55, 76}, {52, 73}, {54, 75}, {53, 74}, {2, 135}, {8, 141}, {10, 143}, {1, 134}, {9, 142}, {3, 136}, {7, 140}, {4, 137}, {6, 139}, {5, 138}, {16, 128}, {17, 129}, {18, 130}, {19, 131}, {20, 132}, {21, 133}, {11, 144}, {12, 145}, {14, 147}, {13, 146}, {107, 128}, {111, 132}, {123, 144}, {127, 147}, {108, 129}, {110, 131}, {124, 145}, {126, 147}, {109, 130}, {125, 146}, {112, 133}, {114, 135}, {120, 141}, {122, 143}, {113, 134}, {121, 142}, {115, 136}, {119, 140}, {116, 137}, {118, 139}, {117, 138}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 134)(3, 113)(4, 92)(5, 71)(6, 50)(7, 29)(9, 141)(10, 120)(11, 99)(12, 78)(13, 57)(14, 36)(16, 127)(17, 106)(18, 85)(19, 64)(20, 43)(21, 22)(23, 133)(24, 112)(25, 91)(26, 70)(27, 49)(30, 140)(31, 119)(32, 98)(33, 77)(34, 56)(37, 147)(38, 126)(39, 105)(40, 84)(41, 63)(44, 132)(45, 111)(46, 90)(47, 69)(51, 139)(52, 118)(53, 97)(54, 76)(58, 146)(59, 125)(60, 104)(61, 83)(65, 131)(66, 110)(67, 89)(72, 138)(73, 117)(74, 96)(79, 145)(80, 124)(81, 103)(86, 130)(87, 109)(93, 137)(94, 116)(100, 144)(101, 123)(107, 129)(114, 136)(121, 143)
b: (2, 22)(3, 43)(4, 64)(5, 85)(6, 106)(7, 127)(8, 15)(9, 36)(10, 57)(11, 78)(12, 99)(13, 120)(14, 141)(16, 29)(17, 50)(18, 71)(19, 92)(20, 113)(21, 134)(24, 44)(25, 65)(26, 86)(27, 107)(28, 128)(30, 37)(31, 58)(32, 79)(33, 100)(34, 121)(35, 142)(38, 51)(39, 72)(40, 93)(41, 114)(42, 135)(46, 66)(47, 87)(48, 108)(49, 129)(52, 59)(53, 80)(54, 101)(55, 122)(56, 143)(60, 73)(61, 94)(62, 115)(63, 136)(68, 88)(69, 109)(70, 130)(74, 81)(75, 102)(76, 123)(77, 144)(82, 95)(83, 116)(84, 137)(90, 110)(91, 131)(96, 103)(97, 124)(98, 145)(104, 117)(105, 138)(112, 132)(118, 125)(119, 146)(126, 139)(140, 147)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)(22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42)(43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63)(64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84)(85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105)(106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126)(127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 147, 2 ]
147
-1 22 2 134 21
-2 1 23 3 135
-3 2 24 4 136
-4 3 25 5 137
-5 4 26 6 138
-6 5 27 7 139
-7 6 28 8 140
-8 7 29 9 141
-9 8 30 10 142
-10 11 143 9 31
-11 12 144 10 32
-12 11 33 13 145
-13 12 34 14 146
-14 13 35 15 147
-15 14 36 16 127
-16 15 37 17 128
-17 16 38 18 129
-18 17 39 19 130
-19 18 40 20 131
-20 132 19 41 21
-21 1 133 20 42
-22 1 23 42 43
-23 22 44 2 24
-24 23 45 3 25
-25 24 46 4 26
-26 25 47 5 27
-27 26 48 6 28
-28 27 49 7 29
-29 28 50 8 30
-30 29 51 9 31
-31 30 52 10 32
-32 11 33 31 53
-33 12 34 32 54
-34 33 55 13 35
-35 34 56 14 36
-36 35 57 15 37
-37 36 58 16 38
-38 37 59 17 39
-39 38 60 18 40
-40 39 61 19 41
-41 40 62 20 42
-42 22 41 63 21
-43 22 44 63 64
-44 23 45 43 65
-45 44 66 24 46
-46 45 67 25 47
-47 46 68 26 48
-48 47 69 27 49
-49 48 70 28 50
-50 49 71 29 51
-51 50 72 30 52
-52 51 73 31 53
-53 52 74 32 54
-54 33 55 53 75
-55 34 56 54 76
-56 55 77 35 57
-57 56 78 36 58
-58 57 79 37 59
-59 58 80 38 60
-60 59 81 39 61
-61 60 82 40 62
-62 61 83 41 63
-63 62 84 42 43
-64 84 85 43 65
-65 44 66 64 86
-66 45 67 65 87
-67 66 88 46 68
-68 67 89 47 69
-69 68 90 48 70
-70 69 91 49 71
-71 70 92 50 72
-72 71 93 51 73
-73 72 94 52 74
-74 73 95 53 75
-75 74 96 54 76
-76 55 77 75 97
-77 56 78 76 98
-78 77 99 57 79
-79 78 100 58 80
-80 79 101 59 81
-81 80 102 60 82
-82 81 103 61 83
-83 82 104 62 84
-84 83 105 63 64
-85 105 106 64 86
-86 85 107 65 87
-87 66 88 86 108
-88 67 89 87 109
-89 88 110 68 90
-90 89 111 69 91
-91 90 112 70 92
-92 91 113 71 93
-93 92 114 72 94
-94 93 115 73 95
-95 94 116 74 96
-96 95 117 75 97
-97 96 118 76 98
-98 77 99 97 119
-99 78 100 98 120
-100 99 121 79 101
-101 100 122 80 102
-102 101 123 81 103
-103 102 124 82 104
-104 103 125 83 105
-105 104 126 84 85
-106 126 127 85 107
-107 106 128 86 108
-108 107 129 87 109
-109 88 110 108 130
-110 89 111 109 131
-111 110 132 90 112
-112 111 133 91 113
-113 112 134 92 114
-114 113 135 93 115
-115 114 136 94 116
-116 115 137 95 117
-117 116 138 96 118
-118 117 139 97 119
-119 118 140 98 120
-120 99 121 119 141
-121 100 122 120 142
-122 121 143 101 123
-123 122 144 102 124
-124 123 145 103 125
-125 124 146 104 126
-126 125 147 105 106
-127 15 147 106 128
-128 16 127 107 129
-129 17 128 108 130
-130 18 129 109 131
-131 110 132 19 130
-132 111 133 20 131
-133 132 112 134 21
-134 1 133 113 135
-135 2 134 114 136
-136 3 135 115 137
-137 4 136 116 138
-138 5 137 117 139
-139 6 138 118 140
-140 7 139 119 141
-141 8 140 120 142
-142 121 143 9 141
-143 122 144 10 142
-144 11 143 123 145
-145 12 144 124 146
-146 13 145 125 147
-147 14 146 126 127
0

**************