C4graphGraph forms for C4 [ 147, 4 ] = PS(3,49;18)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 147, 4 ] = PS(3,49;18).

(I) Following is a form readable by MAGMA:

g:=Graph<147|{ {49, 50}, {96, 114}, {97, 115}, {98, 116}, {96, 127}, {69, 100}, {95, 126}, {93, 124}, {91, 122}, {89, 120}, {87, 118}, {85, 116}, {83, 114}, {81, 112}, {79, 110}, {77, 108}, {75, 106}, {73, 104}, {71, 102}, {70, 101}, {94, 125}, {90, 121}, {86, 117}, {82, 113}, {78, 109}, {74, 105}, {68, 99}, {92, 123}, {84, 115}, {76, 107}, {94, 112}, {95, 113}, {72, 103}, {88, 119}, {2, 50}, {15, 63}, {14, 62}, {13, 61}, {12, 60}, {11, 59}, {10, 58}, {9, 57}, {8, 56}, {7, 55}, {6, 54}, {5, 53}, {4, 52}, {3, 51}, {1, 51}, {93, 111}, {92, 110}, {89, 107}, {88, 106}, {85, 103}, {84, 102}, {81, 99}, {13, 63}, {12, 62}, {9, 59}, {8, 58}, {5, 55}, {4, 54}, {2, 52}, {91, 109}, {90, 108}, {83, 101}, {82, 100}, {11, 61}, {10, 60}, {3, 53}, {6, 56}, {87, 105}, {86, 104}, {7, 57}, {80, 111}, {52, 119}, {60, 127}, {56, 123}, {32, 100}, {49, 117}, {48, 116}, {43, 111}, {33, 101}, {34, 102}, {35, 103}, {40, 108}, {41, 109}, {42, 110}, {51, 118}, {59, 126}, {57, 124}, {50, 117}, {58, 125}, {36, 104}, {37, 105}, {38, 106}, {39, 107}, {53, 120}, {55, 122}, {14, 64}, {47, 97}, {46, 96}, {15, 65}, {30, 80}, {31, 81}, {32, 111}, {54, 121}, {48, 127}, {16, 64}, {49, 97}, {48, 96}, {25, 73}, {24, 72}, {23, 71}, {22, 70}, {21, 69}, {20, 68}, {19, 67}, {18, 66}, {17, 65}, {26, 74}, {27, 75}, {28, 76}, {29, 77}, {30, 78}, {31, 79}, {33, 112}, {47, 126}, {45, 124}, {43, 122}, {35, 114}, {37, 116}, {39, 118}, {41, 120}, {16, 66}, {48, 98}, {25, 75}, {24, 74}, {21, 71}, {20, 70}, {17, 67}, {28, 78}, {29, 79}, {34, 113}, {46, 125}, {38, 117}, {42, 121}, {18, 68}, {19, 69}, {26, 76}, {27, 77}, {36, 115}, {44, 123}, {44, 112}, {47, 115}, {46, 114}, {45, 113}, {22, 72}, {23, 73}, {40, 119}, {1, 98}, {32, 80}, {47, 95}, {46, 94}, {45, 93}, {44, 92}, {43, 91}, {33, 81}, {34, 82}, {35, 83}, {36, 84}, {37, 85}, {38, 86}, {39, 87}, {40, 88}, {41, 89}, {42, 90}, {21, 100}, {25, 104}, {23, 102}, {27, 106}, {29, 108}, {31, 110}, {32, 82}, {45, 95}, {44, 94}, {33, 83}, {36, 86}, {37, 87}, {40, 90}, {41, 91}, {22, 101}, {26, 105}, {30, 109}, {2, 119}, {10, 127}, {8, 125}, {34, 84}, {43, 93}, {35, 85}, {42, 92}, {1, 118}, {20, 99}, {9, 126}, {28, 107}, {3, 120}, {7, 124}, {31, 99}, {4, 121}, {6, 123}, {38, 88}, {39, 89}, {5, 122}, {24, 103}, {1, 129}, {19, 147}, {18, 146}, {17, 145}, {16, 144}, {15, 143}, {14, 142}, {13, 141}, {12, 140}, {11, 139}, {10, 138}, {9, 137}, {8, 136}, {7, 135}, {6, 134}, {5, 133}, {4, 132}, {3, 131}, {2, 130}, {11, 128}, {15, 132}, {27, 144}, {12, 129}, {14, 131}, {28, 145}, {30, 147}, {13, 130}, {29, 146}, {16, 133}, {24, 141}, {18, 135}, {26, 143}, {17, 134}, {25, 142}, {19, 136}, {23, 140}, {20, 137}, {22, 139}, {21, 138}, {50, 130}, {63, 143}, {62, 142}, {61, 141}, {60, 140}, {59, 139}, {58, 138}, {57, 137}, {56, 136}, {55, 135}, {54, 134}, {53, 133}, {52, 132}, {51, 131}, {49, 128}, {61, 128}, {63, 130}, {62, 129}, {64, 131}, {80, 147}, {76, 143}, {72, 139}, {68, 135}, {65, 132}, {75, 142}, {73, 140}, {67, 134}, {66, 133}, {74, 141}, {69, 136}, {71, 138}, {70, 137}, {64, 144}, {67, 147}, {66, 146}, {65, 145}, {77, 144}, {79, 146}, {78, 145}, {97, 128}, {98, 129} }>;

(II) A more general form is to represent the graph as the orbit of {49, 50} under the group generated by the following permutations:

a: (2, 49)(3, 48)(4, 47)(5, 46)(6, 45)(7, 44)(8, 43)(9, 42)(10, 41)(11, 40)(12, 39)(13, 38)(14, 37)(15, 36)(16, 35)(17, 34)(18, 33)(19, 32)(20, 31)(21, 30)(22, 29)(23, 28)(24, 27)(25, 26)(51, 98)(52, 97)(53, 96)(54, 95)(55, 94)(56, 93)(57, 92)(58, 91)(59, 90)(60, 89)(61, 88)(62, 87)(63, 86)(64, 85)(65, 84)(66, 83)(67, 82)(68, 81)(69, 80)(70, 79)(71, 78)(72, 77)(73, 76)(74, 75)(100, 147)(101, 146)(102, 145)(103, 144)(104, 143)(105, 142)(106, 141)(107, 140)(108, 139)(109, 138)(110, 137)(111, 136)(112, 135)(113, 134)(114, 133)(115, 132)(116, 131)(117, 130)(118, 129)(119, 128)(120, 127)(121, 126)(122, 125)(123, 124)
b: (1, 50, 99)(2, 81, 129, 49, 68, 118)(3, 63, 110, 48, 86, 137)(4, 94, 140, 47, 55, 107)(5, 76, 121, 46, 73, 126)(6, 58, 102, 45, 91, 145)(7, 89, 132, 44, 60, 115)(8, 71, 113, 43, 78, 134)(9, 53, 143, 42, 96, 104)(10, 84, 124, 41, 65, 123)(11, 66, 105, 40, 83, 142)(12, 97, 135, 39, 52, 112)(13, 79, 116, 38, 70, 131)(14, 61, 146, 37, 88, 101)(15, 92, 127, 36, 57, 120)(16, 74, 108, 35, 75, 139)(17, 56, 138, 34, 93, 109)(18, 87, 119, 33, 62, 128)(19, 69, 100, 32, 80, 147)(20, 51, 130, 31, 98, 117)(21, 82, 111, 30, 67, 136)(22, 64, 141, 29, 85, 106)(23, 95, 122, 28, 54, 125)(24, 77, 103, 27, 72, 144)(25, 59, 133, 26, 90, 114)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49)(50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98)(99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 147, 4 ]
147
-1 51 118 129 98
-2 50 52 119 130
-3 51 53 120 131
-4 121 132 52 54
-5 55 122 133 53
-6 56 123 134 54
-7 55 57 124 135
-8 56 58 125 136
-9 57 59 126 137
-10 58 60 127 138
-11 59 61 128 139
-12 60 62 129 140
-13 61 63 130 141
-14 62 64 131 142
-15 132 143 63 65
-16 66 133 144 64
-17 67 134 145 65
-18 66 68 135 146
-19 67 69 136 147
-20 99 68 70 137
-21 100 69 71 138
-22 101 70 72 139
-23 102 71 73 140
-24 103 72 74 141
-25 104 73 75 142
-26 143 105 74 76
-27 77 144 106 75
-28 78 145 107 76
-29 77 79 146 108
-30 78 80 147 109
-31 99 110 79 81
-32 100 111 80 82
-33 101 112 81 83
-34 102 113 82 84
-35 103 114 83 85
-36 104 115 84 86
-37 105 116 85 87
-38 88 106 117 86
-39 89 107 118 87
-40 88 90 108 119
-41 89 91 109 120
-42 110 121 90 92
-43 111 122 91 93
-44 112 123 92 94
-45 113 124 93 95
-46 114 125 94 96
-47 115 126 95 97
-48 116 127 96 98
-49 50 117 128 97
-50 2 49 117 130
-51 1 3 118 131
-52 132 2 4 119
-53 133 3 5 120
-54 121 134 4 6
-55 122 135 5 7
-56 123 136 6 8
-57 124 137 7 9
-58 125 138 8 10
-59 11 126 139 9
-60 12 127 140 10
-61 11 13 128 141
-62 12 14 129 142
-63 143 13 15 130
-64 144 14 16 131
-65 132 145 15 17
-66 133 146 16 18
-67 134 147 17 19
-68 99 135 18 20
-69 100 136 19 21
-70 22 101 137 20
-71 23 102 138 21
-72 22 24 103 139
-73 23 25 104 140
-74 24 26 105 141
-75 25 27 106 142
-76 143 26 28 107
-77 144 27 29 108
-78 145 28 30 109
-79 110 146 29 31
-80 111 147 30 32
-81 33 99 112 31
-82 34 100 113 32
-83 33 35 101 114
-84 34 36 102 115
-85 35 37 103 116
-86 36 38 104 117
-87 37 39 105 118
-88 38 40 106 119
-89 39 41 107 120
-90 121 40 42 108
-91 122 41 43 109
-92 44 110 123 42
-93 45 111 124 43
-94 44 46 112 125
-95 45 47 113 126
-96 46 48 114 127
-97 47 49 115 128
-98 1 48 116 129
-99 68 81 20 31
-100 69 82 21 32
-101 22 33 70 83
-102 23 34 71 84
-103 24 35 72 85
-104 25 36 73 86
-105 26 37 74 87
-106 88 27 38 75
-107 89 28 39 76
-108 77 90 29 40
-109 78 91 30 41
-110 79 92 31 42
-111 80 93 32 43
-112 33 44 81 94
-113 34 45 82 95
-114 35 46 83 96
-115 36 47 84 97
-116 37 48 85 98
-117 38 49 50 86
-118 1 39 51 87
-119 88 2 40 52
-120 89 3 41 53
-121 90 4 42 54
-122 55 91 5 43
-123 44 56 92 6
-124 45 57 93 7
-125 46 58 94 8
-126 47 59 95 9
-127 48 60 96 10
-128 11 49 61 97
-129 1 12 62 98
-130 2 13 50 63
-131 3 14 51 64
-132 4 15 52 65
-133 66 5 16 53
-134 67 6 17 54
-135 55 68 7 18
-136 56 69 8 19
-137 57 70 9 20
-138 58 71 10 21
-139 11 22 59 72
-140 12 23 60 73
-141 13 24 61 74
-142 14 25 62 75
-143 15 26 63 76
-144 77 16 27 64
-145 78 17 28 65
-146 66 79 18 29
-147 67 80 19 30
0

**************