C4graphGraph forms for C4 [ 148, 4 ] = SDD(C_37(1,6))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 148, 4 ] = SDD(C_37(1,6)).

(I) Following is a form readable by MAGMA:

g:=Graph<148|{ {72, 108}, {74, 110}, {73, 109}, {72, 109}, {74, 111}, {65, 103}, {64, 103}, {73, 110}, {64, 104}, {66, 104}, {69, 111}, {66, 105}, {71, 108}, {67, 104}, {65, 109}, {71, 107}, {70, 106}, {69, 105}, {67, 110}, {70, 107}, {68, 105}, {68, 106}, {15, 79}, {25, 89}, {17, 81}, {14, 79}, {27, 90}, {17, 80}, {12, 78}, {21, 87}, {18, 80}, {13, 78}, {31, 92}, {19, 80}, {9, 77}, {22, 82}, {21, 81}, {18, 86}, {11, 79}, {8, 77}, {23, 82}, {22, 83}, {20, 81}, {11, 78}, {8, 78}, {29, 91}, {20, 82}, {10, 77}, {39, 96}, {3, 75}, {30, 86}, {29, 85}, {5, 77}, {41, 97}, {2, 75}, {31, 86}, {30, 87}, {28, 85}, {5, 76}, {43, 98}, {1, 75}, {28, 86}, {25, 83}, {6, 76}, {7, 76}, {24, 83}, {47, 100}, {24, 84}, {1, 76}, {26, 84}, {45, 99}, {4, 75}, {27, 84}, {26, 85}, {23, 88}, {48, 96}, {57, 105}, {59, 106}, {50, 96}, {53, 103}, {2, 81}, {63, 108}, {50, 97}, {51, 96}, {6, 82}, {49, 101}, {53, 97}, {54, 98}, {51, 102}, {52, 97}, {54, 99}, {55, 98}, {52, 98}, {61, 107}, {12, 84}, {62, 102}, {61, 101}, {39, 127}, {38, 127}, {63, 102}, {62, 103}, {60, 101}, {9, 83}, {60, 102}, {15, 85}, {36, 126}, {57, 99}, {36, 127}, {37, 126}, {56, 99}, {32, 124}, {34, 126}, {56, 100}, {32, 125}, {33, 124}, {14, 80}, {58, 100}, {35, 125}, {16, 79}, {59, 100}, {58, 101}, {34, 125}, {55, 104}, {13, 109}, {26, 122}, {24, 120}, {23, 119}, {22, 119}, {25, 120}, {24, 121}, {20, 118}, {30, 124}, {27, 121}, {20, 119}, {26, 121}, {21, 118}, {16, 116}, {31, 123}, {27, 127}, {17, 117}, {30, 123}, {10, 108}, {28, 122}, {19, 117}, {17, 118}, {29, 122}, {28, 123}, {25, 126}, {18, 117}, {3, 106}, {21, 124}, {18, 123}, {23, 125}, {4, 111}, {7, 107}, {22, 120}, {49, 95}, {48, 95}, {1, 113}, {45, 93}, {46, 94}, {1, 112}, {9, 120}, {6, 119}, {44, 93}, {46, 95}, {47, 94}, {2, 112}, {41, 91}, {44, 94}, {3, 112}, {40, 91}, {2, 118}, {5, 113}, {4, 112}, {40, 92}, {12, 121}, {15, 122}, {7, 113}, {33, 87}, {42, 92}, {5, 114}, {32, 87}, {6, 113}, {42, 93}, {43, 92}, {10, 114}, {32, 88}, {11, 115}, {8, 114}, {34, 88}, {14, 116}, {37, 95}, {8, 115}, {34, 89}, {15, 116}, {14, 117}, {9, 114}, {35, 88}, {19, 111}, {33, 93}, {37, 89}, {38, 90}, {35, 94}, {36, 89}, {38, 91}, {39, 90}, {13, 115}, {16, 110}, {36, 90}, {11, 116}, {12, 115}, {16, 147}, {19, 148}, {3, 143}, {4, 148}, {7, 144}, {10, 145}, {29, 128}, {31, 129}, {13, 146}, {35, 131}, {37, 132}, {39, 133}, {33, 130}, {45, 136}, {38, 128}, {47, 137}, {40, 128}, {42, 130}, {40, 129}, {41, 128}, {43, 129}, {46, 132}, {42, 129}, {43, 135}, {47, 131}, {46, 131}, {61, 144}, {44, 130}, {63, 145}, {41, 134}, {44, 131}, {45, 130}, {55, 135}, {58, 138}, {56, 136}, {54, 135}, {57, 136}, {56, 137}, {52, 134}, {62, 140}, {59, 137}, {52, 135}, {58, 137}, {53, 134}, {48, 132}, {63, 139}, {59, 143}, {50, 134}, {48, 133}, {62, 139}, {49, 132}, {51, 133}, {60, 138}, {50, 133}, {61, 138}, {60, 139}, {57, 142}, {51, 139}, {53, 140}, {55, 141}, {49, 138}, {54, 136}, {70, 143}, {68, 142}, {68, 143}, {69, 142}, {64, 140}, {66, 142}, {64, 141}, {65, 140}, {67, 141}, {66, 141}, {67, 147}, {69, 148}, {65, 146}, {70, 144}, {71, 145}, {71, 144}, {72, 145}, {74, 147}, {72, 146}, {73, 147}, {73, 146}, {74, 148} }>;

(II) A more general form is to represent the graph as the orbit of {72, 108} under the group generated by the following permutations:

a: (77, 114)
b: (98, 135)
c: (100, 137)
d: (107, 144)
e: (85, 122)
f: (95, 132)
g: (99, 136)
h: (108, 145)
m: (1, 2, 4, 3)(5, 21, 74, 59)(6, 17, 69, 70)(7, 20, 19, 68)(8, 33, 73, 47)(9, 30, 67, 58)(10, 32, 16, 56)(11, 45, 72, 35)(12, 42, 65, 46)(13, 44)(14, 57, 71, 23)(15, 54, 63, 34)(18, 66, 61, 22)(24, 31, 64, 49)(25, 28, 55, 60)(26, 43, 62, 37)(27, 40, 53, 48)(29, 52, 51, 36)(38, 41, 50, 39)(76, 81, 111, 106)(77, 87, 110, 100)(78, 93, 109, 94)(79, 99, 108, 88)(80, 105, 107, 82)(83, 86, 104, 101)(84, 92, 103, 95)(85, 98, 102, 89)(90, 91, 97, 96)(113, 118, 148, 143)(114, 124, 147, 137)(115, 130, 146, 131)(116, 136, 145, 125)(117, 142, 144, 119)(120, 123, 141, 138)(121, 129, 140, 132)(122, 135, 139, 126)(127, 128, 134, 133)
n1: (102, 139)
a1: (87, 124)
b1: (88, 125)
c1: (105, 142)
d1: (93, 130)
e1: (104, 141)
f1: (110, 147)
g1: (101, 138)
h1: (82, 119)
m1: (81, 118)
n2: (83, 120)
a2: (94, 131)
b2: (91, 128)
c2: (2, 7)(3, 6)(4, 5)(8, 74)(9, 69)(10, 19)(11, 73)(12, 67)(13, 16)(14, 72)(15, 65)(17, 71)(18, 63)(20, 70)(21, 61)(22, 68)(23, 59)(24, 66)(25, 57)(26, 64)(27, 55)(28, 62)(29, 53)(30, 60)(31, 51)(32, 58)(33, 49)(34, 56)(35, 47)(36, 54)(37, 45)(38, 52)(39, 43)(40, 50)(42, 48)(44, 46)(75, 76)(77, 111)(78, 110)(79, 109)(80, 108)(81, 107)(82, 106)(83, 105)(84, 104)(85, 103)(86, 102)(87, 101)(88, 100)(89, 99)(90, 98)(91, 97)(92, 96)(93, 95)(112, 113)(114, 148)(115, 147)(116, 146)(117, 145)(118, 144)(119, 143)(120, 142)(121, 141)(122, 140)(123, 139)(124, 138)(125, 137)(126, 136)(127, 135)(128, 134)(129, 133)(130, 132)
d2: (111, 148)
e2: (80, 117)
f2: (84, 121)
g2: (89, 126)
h2: (76, 113)
m2: (109, 146)
n3: (86, 123)
a3: (79, 116)
b3: (92, 129)
c3: (97, 134)
d3: (96, 133)
e3: (75, 112)
f3: (103, 140)
g3: (78, 115)
h3: (106, 143)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 148, 4 ]
148
-1 112 113 75 76
-2 112 81 118 75
-3 143 112 106 75
-4 111 112 148 75
-5 77 113 114 76
-6 113 82 119 76
-7 144 113 107 76
-8 77 78 114 115
-9 77 114 83 120
-10 77 145 114 108
-11 78 79 115 116
-12 121 78 115 84
-13 78 146 115 109
-14 79 80 116 117
-15 122 79 116 85
-16 110 79 147 116
-17 80 81 117 118
-18 123 80 117 86
-19 111 80 148 117
-20 81 82 118 119
-21 124 81 118 87
-22 82 83 119 120
-23 88 125 82 119
-24 121 83 84 120
-25 89 126 83 120
-26 121 122 84 85
-27 121 90 127 84
-28 122 123 85 86
-29 122 91 128 85
-30 123 124 86 87
-31 123 92 129 86
-32 88 124 125 87
-33 124 93 130 87
-34 88 89 125 126
-35 88 125 94 131
-36 89 90 126 127
-37 132 89 126 95
-38 90 91 127 128
-39 133 90 127 96
-40 91 92 128 129
-41 134 91 128 97
-42 92 93 129 130
-43 135 92 129 98
-44 93 94 130 131
-45 99 136 93 130
-46 132 94 95 131
-47 100 137 94 131
-48 132 133 95 96
-49 132 101 138 95
-50 133 134 96 97
-51 133 102 139 96
-52 134 135 97 98
-53 134 103 140 97
-54 99 135 136 98
-55 135 104 141 98
-56 99 100 136 137
-57 99 136 105 142
-58 100 101 137 138
-59 143 100 137 106
-60 101 102 138 139
-61 144 101 138 107
-62 102 103 139 140
-63 145 102 139 108
-64 103 104 140 141
-65 146 103 140 109
-66 104 105 141 142
-67 110 147 104 141
-68 143 105 106 142
-69 111 148 105 142
-70 143 144 106 107
-71 144 145 107 108
-72 145 146 108 109
-73 110 146 147 109
-74 110 111 147 148
-75 1 2 3 4
-76 1 5 6 7
-77 5 8 9 10
-78 11 12 13 8
-79 11 14 15 16
-80 14 17 18 19
-81 2 17 20 21
-82 22 23 6 20
-83 22 24 25 9
-84 12 24 26 27
-85 15 26 28 29
-86 28 18 30 31
-87 33 30 21 32
-88 23 34 35 32
-89 34 25 36 37
-90 36 27 38 39
-91 38 29 40 41
-92 40 31 42 43
-93 33 44 45 42
-94 44 35 46 47
-95 46 37 48 49
-96 48 39 50 51
-97 50 41 52 53
-98 55 52 43 54
-99 45 56 57 54
-100 56 47 58 59
-101 58 49 60 61
-102 60 51 62 63
-103 62 53 64 65
-104 55 66 67 64
-105 66 57 68 69
-106 68 3 59 70
-107 70 71 61 7
-108 71 72 63 10
-109 13 72 73 65
-110 67 16 73 74
-111 69 4 19 74
-112 1 2 3 4
-113 1 5 6 7
-114 5 8 9 10
-115 11 12 13 8
-116 11 14 15 16
-117 14 17 18 19
-118 2 17 20 21
-119 22 23 6 20
-120 22 24 25 9
-121 12 24 26 27
-122 15 26 28 29
-123 28 18 30 31
-124 33 30 21 32
-125 23 34 35 32
-126 34 25 36 37
-127 36 27 38 39
-128 38 29 40 41
-129 40 31 42 43
-130 33 44 45 42
-131 44 35 46 47
-132 46 37 48 49
-133 48 39 50 51
-134 50 41 52 53
-135 55 52 43 54
-136 45 56 57 54
-137 56 47 58 59
-138 58 49 60 61
-139 60 51 62 63
-140 62 53 64 65
-141 55 66 67 64
-142 66 57 68 69
-143 68 3 59 70
-144 70 71 61 7
-145 71 72 63 10
-146 13 72 73 65
-147 67 16 73 74
-148 69 4 19 74
0

**************