C4graphGraph forms for C4 [ 149, 1 ] = C_149(1,44)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 149, 1 ] = C_149(1,44).

(I) Following is a form readable by MAGMA:

g:=Graph<149|{ {2, 3}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {1, 2}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {3, 4}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {59, 60}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {7, 8}, {135, 136}, {119, 120}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {1, 45}, {2, 46}, {3, 47}, {16, 60}, {17, 61}, {18, 62}, {19, 63}, {64, 108}, {65, 109}, {66, 110}, {67, 111}, {80, 124}, {81, 125}, {82, 126}, {83, 127}, {4, 48}, {5, 49}, {6, 50}, {7, 51}, {12, 56}, {13, 57}, {14, 58}, {15, 59}, {68, 112}, {69, 113}, {70, 114}, {71, 115}, {76, 120}, {77, 121}, {78, 122}, {79, 123}, {8, 52}, {9, 53}, {10, 54}, {11, 55}, {72, 116}, {73, 117}, {74, 118}, {75, 119}, {31, 32}, {95, 96}, {20, 64}, {55, 99}, {54, 98}, {53, 97}, {52, 96}, {21, 65}, {22, 66}, {23, 67}, {28, 72}, {29, 73}, {30, 74}, {31, 75}, {60, 104}, {61, 105}, {62, 106}, {63, 107}, {24, 68}, {59, 103}, {58, 102}, {57, 101}, {56, 100}, {25, 69}, {26, 70}, {27, 71}, {2, 107}, {4, 109}, {6, 111}, {16, 121}, {18, 123}, {20, 125}, {22, 127}, {1, 106}, {5, 110}, {17, 122}, {21, 126}, {32, 76}, {51, 95}, {50, 94}, {49, 93}, {48, 92}, {35, 79}, {34, 78}, {33, 77}, {3, 108}, {19, 124}, {36, 80}, {47, 91}, {46, 90}, {45, 89}, {44, 88}, {39, 83}, {38, 82}, {37, 81}, {7, 112}, {15, 120}, {8, 113}, {10, 115}, {12, 117}, {14, 119}, {9, 114}, {13, 118}, {40, 84}, {43, 87}, {42, 86}, {41, 85}, {11, 116}, {63, 64}, {1, 149}, {23, 128}, {31, 136}, {24, 129}, {26, 131}, {28, 133}, {30, 135}, {25, 130}, {29, 134}, {27, 132}, {32, 137}, {38, 143}, {36, 141}, {34, 139}, {33, 138}, {37, 142}, {35, 140}, {39, 144}, {40, 145}, {44, 149}, {42, 147}, {41, 146}, {43, 148}, {84, 128}, {85, 129}, {86, 130}, {87, 131}, {92, 136}, {93, 137}, {94, 138}, {95, 139}, {88, 132}, {89, 133}, {90, 134}, {91, 135}, {96, 140}, {97, 141}, {98, 142}, {99, 143}, {100, 144}, {101, 145}, {102, 146}, {103, 147}, {104, 148}, {105, 149}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 45, 149, 106)(3, 89, 148, 62)(4, 133, 147, 18)(5, 28, 146, 123)(6, 72, 145, 79)(7, 116, 144, 35)(8, 11, 143, 140)(9, 55, 142, 96)(10, 99, 141, 52)(12, 38, 139, 113)(13, 82, 138, 69)(14, 126, 137, 25)(15, 21, 136, 130)(16, 65, 135, 86)(17, 109, 134, 42)(19, 48, 132, 103)(20, 92, 131, 59)(22, 31, 129, 120)(23, 75, 128, 76)(24, 119, 127, 32)(26, 58, 125, 93)(27, 102, 124, 49)(29, 41, 122, 110)(30, 85, 121, 66)(33, 68, 118, 83)(34, 112, 117, 39)(36, 51, 115, 100)(37, 95, 114, 56)(40, 78, 111, 73)(43, 61, 108, 90)(44, 105, 107, 46)(47, 88, 104, 63)(50, 71, 101, 80)(53, 54, 98, 97)(57, 81, 94, 70)(60, 64, 91, 87)(67, 74, 84, 77)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 149, 1 ]
149
-1 45 2 149 106
-2 1 46 3 107
-3 2 47 4 108
-4 3 48 5 109
-5 110 4 49 6
-6 111 5 50 7
-7 112 6 51 8
-8 113 7 52 9
-9 114 8 53 10
-10 11 115 9 54
-11 55 12 116 10
-12 11 56 13 117
-13 12 57 14 118
-14 13 58 15 119
-15 14 59 16 120
-16 121 15 60 17
-17 122 16 61 18
-18 123 17 62 19
-19 124 18 63 20
-20 125 19 64 21
-21 22 126 20 65
-22 66 23 127 21
-23 22 67 24 128
-24 23 68 25 129
-25 24 69 26 130
-26 25 70 27 131
-27 132 26 71 28
-28 133 27 72 29
-29 134 28 73 30
-30 135 29 74 31
-31 136 30 75 32
-32 33 137 31 76
-33 77 34 138 32
-34 33 78 35 139
-35 34 79 36 140
-36 35 80 37 141
-37 36 81 38 142
-38 143 37 82 39
-39 144 38 83 40
-40 145 39 84 41
-41 146 40 85 42
-42 147 41 86 43
-43 44 148 42 87
-44 88 45 149 43
-45 44 1 89 46
-46 45 2 90 47
-47 46 3 91 48
-48 47 4 92 49
-49 48 5 93 50
-50 49 6 94 51
-51 50 7 95 52
-52 51 8 96 53
-53 52 9 97 54
-54 55 53 10 98
-55 11 99 56 54
-56 55 12 100 57
-57 56 13 101 58
-58 57 14 102 59
-59 58 15 103 60
-60 59 16 104 61
-61 60 17 105 62
-62 61 18 106 63
-63 62 19 107 64
-64 63 20 108 65
-65 66 64 21 109
-66 22 110 67 65
-67 66 23 111 68
-68 67 24 112 69
-69 68 25 113 70
-70 69 26 114 71
-71 70 27 115 72
-72 71 28 116 73
-73 72 29 117 74
-74 73 30 118 75
-75 74 31 119 76
-76 77 75 32 120
-77 33 121 78 76
-78 77 34 122 79
-79 78 35 123 80
-80 79 36 124 81
-81 80 37 125 82
-82 81 38 126 83
-83 82 39 127 84
-84 83 40 128 85
-85 84 41 129 86
-86 85 42 130 87
-87 88 86 43 131
-88 44 132 89 87
-89 88 45 133 90
-90 89 46 134 91
-91 90 47 135 92
-92 91 48 136 93
-93 92 49 137 94
-94 93 50 138 95
-95 94 51 139 96
-96 95 52 140 97
-97 96 53 141 98
-98 99 97 54 142
-99 55 143 100 98
-100 99 56 144 101
-101 100 57 145 102
-102 101 58 146 103
-103 102 59 147 104
-104 103 60 148 105
-105 104 61 149 106
-106 1 105 62 107
-107 2 106 63 108
-108 3 107 64 109
-109 110 4 108 65
-110 66 111 5 109
-111 110 67 112 6
-112 111 68 113 7
-113 112 69 114 8
-114 113 70 115 9
-115 114 71 116 10
-116 11 115 72 117
-117 12 116 73 118
-118 13 117 74 119
-119 14 118 75 120
-120 121 15 119 76
-121 77 122 16 120
-122 121 78 123 17
-123 122 79 124 18
-124 123 80 125 19
-125 124 81 126 20
-126 125 82 127 21
-127 22 126 83 128
-128 23 127 84 129
-129 24 128 85 130
-130 25 129 86 131
-131 132 26 130 87
-132 88 133 27 131
-133 132 89 134 28
-134 133 90 135 29
-135 134 91 136 30
-136 135 92 137 31
-137 136 93 138 32
-138 33 137 94 139
-139 34 138 95 140
-140 35 139 96 141
-141 36 140 97 142
-142 143 37 141 98
-143 99 144 38 142
-144 143 100 145 39
-145 144 101 146 40
-146 145 102 147 41
-147 146 103 148 42
-148 147 104 149 43
-149 44 1 148 105
0

**************