C4graphGraph forms for C4 [ 150, 2 ] = C_150(1,49)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 150, 2 ] = C_150(1,49).

(I) Following is a form readable by MAGMA:

g:=Graph<150|{ {2, 3}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {1, 2}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {3, 4}, {147, 148}, {139, 140}, {131, 132}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7, 8}, {135, 136}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {2, 51}, {4, 53}, {6, 55}, {8, 57}, {10, 59}, {12, 61}, {14, 63}, {64, 113}, {66, 115}, {68, 117}, {70, 119}, {72, 121}, {74, 123}, {76, 125}, {78, 127}, {1, 50}, {5, 54}, {9, 58}, {13, 62}, {65, 114}, {69, 118}, {73, 122}, {77, 126}, {3, 52}, {11, 60}, {67, 116}, {75, 124}, {7, 56}, {31, 32}, {71, 120}, {95, 96}, {15, 64}, {47, 96}, {31, 80}, {63, 112}, {16, 65}, {58, 107}, {56, 105}, {54, 103}, {52, 101}, {50, 99}, {48, 97}, {18, 67}, {20, 69}, {22, 71}, {24, 73}, {26, 75}, {28, 77}, {30, 79}, {60, 109}, {62, 111}, {17, 66}, {57, 106}, {53, 102}, {49, 98}, {21, 70}, {25, 74}, {29, 78}, {61, 110}, {19, 68}, {51, 100}, {27, 76}, {59, 108}, {23, 72}, {55, 104}, {2, 103}, {8, 109}, {10, 111}, {16, 117}, {18, 119}, {24, 125}, {26, 127}, {1, 102}, {9, 110}, {17, 118}, {25, 126}, {3, 104}, {7, 108}, {19, 120}, {23, 124}, {4, 105}, {6, 107}, {20, 121}, {22, 123}, {5, 106}, {21, 122}, {32, 81}, {46, 95}, {44, 93}, {42, 91}, {40, 89}, {38, 87}, {36, 85}, {34, 83}, {33, 82}, {45, 94}, {41, 90}, {37, 86}, {35, 84}, {43, 92}, {11, 112}, {15, 116}, {12, 113}, {14, 115}, {13, 114}, {39, 88}, {63, 64}, {1, 150}, {27, 128}, {31, 132}, {28, 129}, {30, 131}, {29, 130}, {32, 133}, {48, 149}, {42, 143}, {40, 141}, {34, 135}, {33, 134}, {49, 150}, {41, 142}, {35, 136}, {39, 140}, {36, 137}, {38, 139}, {37, 138}, {43, 144}, {47, 148}, {44, 145}, {46, 147}, {45, 146}, {79, 128}, {95, 144}, {80, 129}, {82, 131}, {84, 133}, {86, 135}, {88, 137}, {90, 139}, {92, 141}, {94, 143}, {81, 130}, {85, 134}, {89, 138}, {93, 142}, {83, 132}, {91, 140}, {87, 136}, {96, 145}, {98, 147}, {100, 149}, {97, 146}, {101, 150}, {99, 148}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 50)(3, 99)(4, 148)(5, 47)(6, 96)(7, 145)(8, 44)(9, 93)(10, 142)(11, 41)(12, 90)(13, 139)(14, 38)(15, 87)(16, 136)(17, 35)(18, 84)(19, 133)(20, 32)(21, 81)(22, 130)(23, 29)(24, 78)(25, 127)(27, 75)(28, 124)(30, 72)(31, 121)(33, 69)(34, 118)(36, 66)(37, 115)(39, 63)(40, 112)(42, 60)(43, 109)(45, 57)(46, 106)(48, 54)(49, 103)(52, 100)(53, 149)(55, 97)(56, 146)(58, 94)(59, 143)(61, 91)(62, 140)(64, 88)(65, 137)(67, 85)(68, 134)(70, 82)(71, 131)(73, 79)(74, 128)(77, 125)(80, 122)(83, 119)(86, 116)(89, 113)(92, 110)(95, 107)(98, 104)(102, 150)(105, 147)(108, 144)(111, 141)(114, 138)(117, 135)(120, 132)(123, 129)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150)
c: (2, 102)(3, 53)(5, 105)(6, 56)(8, 108)(9, 59)(11, 111)(12, 62)(14, 114)(15, 65)(17, 117)(18, 68)(20, 120)(21, 71)(23, 123)(24, 74)(26, 126)(27, 77)(29, 129)(30, 80)(32, 132)(33, 83)(35, 135)(36, 86)(38, 138)(39, 89)(41, 141)(42, 92)(44, 144)(45, 95)(47, 147)(48, 98)(50, 150)(51, 101)(54, 104)(57, 107)(60, 110)(63, 113)(66, 116)(69, 119)(72, 122)(75, 125)(78, 128)(81, 131)(84, 134)(87, 137)(90, 140)(93, 143)(96, 146)(99, 149)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 150, 2 ]
150
-1 2 102 50 150
-2 1 3 103 51
-3 2 4 104 52
-4 3 5 105 53
-5 4 6 106 54
-6 55 5 7 107
-7 56 6 8 108
-8 57 7 9 109
-9 110 58 8 10
-10 11 111 59 9
-11 12 112 60 10
-12 11 13 113 61
-13 12 14 114 62
-14 13 15 115 63
-15 14 16 116 64
-16 15 17 117 65
-17 66 16 18 118
-18 67 17 19 119
-19 68 18 20 120
-20 121 69 19 21
-21 22 122 70 20
-22 23 123 71 21
-23 22 24 124 72
-24 23 25 125 73
-25 24 26 126 74
-26 25 27 127 75
-27 26 28 128 76
-28 77 27 29 129
-29 78 28 30 130
-30 79 29 31 131
-31 132 80 30 32
-32 33 133 81 31
-33 34 134 82 32
-34 33 35 135 83
-35 34 36 136 84
-36 35 37 137 85
-37 36 38 138 86
-38 37 39 139 87
-39 88 38 40 140
-40 89 39 41 141
-41 90 40 42 142
-42 143 91 41 43
-43 44 144 92 42
-44 45 145 93 43
-45 44 46 146 94
-46 45 47 147 95
-47 46 48 148 96
-48 47 49 149 97
-49 48 50 150 98
-50 99 1 49 51
-51 100 2 50 52
-52 101 3 51 53
-53 102 4 52 54
-54 55 103 5 53
-55 56 104 6 54
-56 55 57 105 7
-57 56 58 106 8
-58 57 59 107 9
-59 58 60 108 10
-60 11 59 61 109
-61 110 12 60 62
-62 111 13 61 63
-63 112 14 62 64
-64 113 15 63 65
-65 66 114 16 64
-66 67 115 17 65
-67 66 68 116 18
-68 67 69 117 19
-69 68 70 118 20
-70 69 71 119 21
-71 22 70 72 120
-72 121 23 71 73
-73 122 24 72 74
-74 123 25 73 75
-75 124 26 74 76
-76 77 125 27 75
-77 78 126 28 76
-78 77 79 127 29
-79 78 80 128 30
-80 79 81 129 31
-81 80 82 130 32
-82 33 81 83 131
-83 132 34 82 84
-84 133 35 83 85
-85 134 36 84 86
-86 135 37 85 87
-87 88 136 38 86
-88 89 137 39 87
-89 88 90 138 40
-90 89 91 139 41
-91 90 92 140 42
-92 91 93 141 43
-93 44 92 94 142
-94 143 45 93 95
-95 144 46 94 96
-96 145 47 95 97
-97 146 48 96 98
-98 99 147 49 97
-99 100 148 50 98
-100 99 101 149 51
-101 100 102 150 52
-102 1 101 103 53
-103 2 102 104 54
-104 55 3 103 105
-105 56 4 104 106
-106 57 5 105 107
-107 58 6 106 108
-108 59 7 107 109
-109 110 60 8 108
-110 111 61 9 109
-111 110 112 62 10
-112 11 111 113 63
-113 12 112 114 64
-114 13 113 115 65
-115 66 14 114 116
-116 67 15 115 117
-117 68 16 116 118
-118 69 17 117 119
-119 70 18 118 120
-120 121 71 19 119
-121 122 72 20 120
-122 121 123 73 21
-123 22 122 124 74
-124 23 123 125 75
-125 24 124 126 76
-126 77 25 125 127
-127 78 26 126 128
-128 79 27 127 129
-129 80 28 128 130
-130 81 29 129 131
-131 132 82 30 130
-132 133 83 31 131
-133 132 134 84 32
-134 33 133 135 85
-135 34 134 136 86
-136 35 135 137 87
-137 88 36 136 138
-138 89 37 137 139
-139 90 38 138 140
-140 91 39 139 141
-141 92 40 140 142
-142 143 93 41 141
-143 144 94 42 142
-144 143 145 95 43
-145 44 144 146 96
-146 45 145 147 97
-147 46 146 148 98
-148 99 47 147 149
-149 100 48 148 150
-150 1 101 49 149
0

**************