C4graphGraph forms for C4 [ 150, 3 ] = {4,4}_[15,5]

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 150, 3 ] = {4,4}_[15,5].

(I) Following is a form readable by MAGMA:

g:=Graph<150|{ {2, 3}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {118, 119}, {64, 65}, {62, 63}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {32, 33}, {34, 35}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {1, 2}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {3, 4}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {59, 60}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {7, 8}, {135, 136}, {119, 120}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {1, 31}, {32, 62}, {33, 63}, {64, 94}, {65, 95}, {96, 126}, {97, 127}, {1, 30}, {143, 144}, {47, 48}, {15, 16}, {79, 80}, {111, 112}, {2, 32}, {3, 33}, {6, 36}, {7, 37}, {10, 40}, {11, 41}, {14, 44}, {15, 45}, {18, 48}, {19, 49}, {22, 52}, {23, 53}, {26, 56}, {27, 57}, {30, 60}, {31, 61}, {66, 96}, {67, 97}, {70, 100}, {71, 101}, {74, 104}, {75, 105}, {78, 108}, {79, 109}, {82, 112}, {83, 113}, {86, 116}, {87, 117}, {90, 120}, {91, 121}, {94, 124}, {95, 125}, {31, 60}, {91, 120}, {4, 34}, {5, 35}, {12, 42}, {13, 43}, {20, 50}, {21, 51}, {28, 58}, {29, 59}, {68, 98}, {69, 99}, {76, 106}, {77, 107}, {84, 114}, {85, 115}, {92, 122}, {93, 123}, {8, 38}, {9, 39}, {24, 54}, {25, 55}, {72, 102}, {73, 103}, {88, 118}, {89, 119}, {16, 46}, {17, 47}, {80, 110}, {81, 111}, {31, 32}, {95, 96}, {27, 122}, {29, 124}, {34, 64}, {63, 93}, {62, 92}, {59, 89}, {58, 88}, {55, 85}, {54, 84}, {51, 81}, {50, 80}, {47, 77}, {46, 76}, {43, 73}, {42, 72}, {39, 69}, {38, 68}, {35, 65}, {26, 121}, {30, 125}, {36, 66}, {61, 91}, {60, 90}, {53, 83}, {52, 82}, {45, 75}, {44, 74}, {37, 67}, {28, 123}, {61, 90}, {40, 70}, {57, 87}, {56, 86}, {41, 71}, {2, 127}, {48, 78}, {49, 79}, {1, 126}, {63, 64}, {3, 128}, {7, 132}, {11, 136}, {15, 140}, {19, 144}, {23, 148}, {4, 129}, {6, 131}, {12, 137}, {14, 139}, {20, 145}, {22, 147}, {5, 130}, {13, 138}, {21, 146}, {8, 133}, {10, 135}, {24, 149}, {9, 134}, {25, 150}, {16, 141}, {18, 143}, {17, 142}, {98, 128}, {119, 149}, {118, 148}, {99, 129}, {102, 132}, {103, 133}, {106, 136}, {107, 137}, {110, 140}, {111, 141}, {114, 144}, {115, 145}, {100, 130}, {117, 147}, {116, 146}, {101, 131}, {108, 138}, {109, 139}, {104, 134}, {120, 150}, {105, 135}, {121, 150}, {112, 142}, {113, 143}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30)(31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90)(91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120)(121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150)
b: (2, 126)(3, 96)(4, 66)(5, 36)(7, 131)(8, 101)(9, 71)(10, 41)(12, 136)(13, 106)(14, 76)(15, 46)(17, 141)(18, 111)(19, 81)(20, 51)(22, 146)(23, 116)(24, 86)(25, 56)(27, 121)(28, 91)(29, 61)(30, 31)(32, 125)(33, 95)(34, 65)(37, 130)(38, 100)(39, 70)(42, 135)(43, 105)(44, 75)(47, 140)(48, 110)(49, 80)(52, 145)(53, 115)(54, 85)(57, 150)(58, 120)(59, 90)(62, 124)(63, 94)(67, 129)(68, 99)(72, 134)(73, 104)(77, 139)(78, 109)(82, 144)(83, 114)(87, 149)(88, 119)(92, 123)(97, 128)(102, 133)(107, 138)(112, 143)(117, 148)
c: (2, 31)(3, 61)(4, 91)(5, 121)(6, 26)(7, 56)(8, 86)(9, 116)(10, 146)(11, 21)(12, 51)(13, 81)(14, 111)(15, 141)(17, 46)(18, 76)(19, 106)(20, 136)(22, 41)(23, 71)(24, 101)(25, 131)(27, 36)(28, 66)(29, 96)(30, 126)(33, 62)(34, 92)(35, 122)(37, 57)(38, 87)(39, 117)(40, 147)(42, 52)(43, 82)(44, 112)(45, 142)(48, 77)(49, 107)(50, 137)(53, 72)(54, 102)(55, 132)(58, 67)(59, 97)(60, 127)(64, 93)(65, 123)(68, 88)(69, 118)(70, 148)(73, 83)(74, 113)(75, 143)(79, 108)(80, 138)(84, 103)(85, 133)(89, 98)(90, 128)(95, 124)(99, 119)(100, 149)(104, 114)(105, 144)(110, 139)(115, 134)(120, 129)(130, 150)(135, 145)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 150, 3 ]
150
-1 2 126 30 31
-2 1 3 127 32
-3 33 2 4 128
-4 34 3 5 129
-5 35 4 6 130
-6 36 5 7 131
-7 132 37 6 8
-8 133 38 7 9
-9 134 39 8 10
-10 11 135 40 9
-11 12 136 41 10
-12 11 13 137 42
-13 12 14 138 43
-14 44 13 15 139
-15 45 14 16 140
-16 46 15 17 141
-17 47 16 18 142
-18 143 48 17 19
-19 144 49 18 20
-20 145 50 19 21
-21 22 146 51 20
-22 23 147 52 21
-23 22 24 148 53
-24 23 25 149 54
-25 55 24 26 150
-26 121 56 25 27
-27 122 57 26 28
-28 123 58 27 29
-29 124 59 28 30
-30 1 125 60 29
-31 1 60 61 32
-32 33 2 62 31
-33 34 3 63 32
-34 33 35 4 64
-35 34 36 5 65
-36 66 35 37 6
-37 67 36 38 7
-38 68 37 39 8
-39 69 38 40 9
-40 70 39 41 10
-41 11 71 40 42
-42 12 72 41 43
-43 44 13 73 42
-44 45 14 74 43
-45 44 46 15 75
-46 45 47 16 76
-47 77 46 48 17
-48 78 47 49 18
-49 79 48 50 19
-50 80 49 51 20
-51 81 50 52 21
-52 22 82 51 53
-53 23 83 52 54
-54 55 24 84 53
-55 56 25 85 54
-56 55 57 26 86
-57 56 58 27 87
-58 88 57 59 28
-59 89 58 60 29
-60 90 59 30 31
-61 90 91 62 31
-62 92 61 63 32
-63 33 93 62 64
-64 34 94 63 65
-65 66 35 95 64
-66 67 36 96 65
-67 66 68 37 97
-68 67 69 38 98
-69 99 68 70 39
-70 100 69 71 40
-71 101 70 72 41
-72 102 71 73 42
-73 103 72 74 43
-74 44 104 73 75
-75 45 105 74 76
-76 77 46 106 75
-77 78 47 107 76
-78 77 79 48 108
-79 78 80 49 109
-80 110 79 81 50
-81 111 80 82 51
-82 112 81 83 52
-83 113 82 84 53
-84 114 83 85 54
-85 55 115 84 86
-86 56 116 85 87
-87 88 57 117 86
-88 89 58 118 87
-89 88 90 59 119
-90 89 60 61 120
-91 121 92 61 120
-92 122 91 93 62
-93 123 92 94 63
-94 124 93 95 64
-95 125 94 96 65
-96 66 126 95 97
-97 67 127 96 98
-98 99 68 128 97
-99 100 69 129 98
-100 99 101 70 130
-101 100 102 71 131
-102 132 101 103 72
-103 133 102 104 73
-104 134 103 105 74
-105 135 104 106 75
-106 136 105 107 76
-107 77 137 106 108
-108 78 138 107 109
-109 110 79 139 108
-110 111 80 140 109
-111 110 112 81 141
-112 111 113 82 142
-113 143 112 114 83
-114 144 113 115 84
-115 145 114 116 85
-116 146 115 117 86
-117 147 116 118 87
-118 88 148 117 119
-119 89 149 118 120
-120 90 91 150 119
-121 122 91 26 150
-122 121 123 92 27
-123 122 124 93 28
-124 123 125 94 29
-125 124 126 95 30
-126 1 125 127 96
-127 2 126 128 97
-128 3 127 129 98
-129 99 4 128 130
-130 100 5 129 131
-131 132 101 6 130
-132 133 102 7 131
-133 132 134 103 8
-134 133 135 104 9
-135 134 136 105 10
-136 11 135 137 106
-137 12 136 138 107
-138 13 137 139 108
-139 14 138 140 109
-140 110 15 139 141
-141 111 16 140 142
-142 143 112 17 141
-143 144 113 18 142
-144 143 145 114 19
-145 144 146 115 20
-146 145 147 116 21
-147 22 146 148 117
-148 23 147 149 118
-149 24 148 150 119
-150 121 25 149 120
0

**************