[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 150, 4 ]. See Glossary for some
detail.
PS( 30, 5; 2) = PS( 30, 10; 3) = UG(ATD[150, 13])
= UG(Cmap(300, 11) { 60, 4| 10}_ 30) = UG(Cmap(300, 12) { 60, 4| 10}_ 30) =
MG(Cmap(150, 5) { 60, 60| 15}_ 10)
= MG(Cmap(150, 6) { 60, 60| 15}_ 10) = BGCG(K5, C_ 15, 1) = AT[150, 3]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | - | 0 | - | 1 | 0 | 14 |
3 | - | - | - | - | - | 14 | 0 | - | 1 | 14 |
4 | - | - | - | - | - | 14 | 14 | 1 | - | 0 |
5 | - | - | - | - | - | 0 | 14 | 0 | 1 | - |
6 | - | 0 | 1 | 1 | 0 | - | - | - | - | - |
7 | 0 | - | 0 | 1 | 1 | - | - | - | - | - |
8 | 0 | 14 | - | 14 | 0 | - | - | - | - | - |
9 | 0 | 0 | 14 | - | 14 | - | - | - | - | - |
10 | 0 | 1 | 1 | 0 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 1 | 0 | - | 0 |
2 | - | - | - | - | - | 0 | - | 0 14 | 0 | - |
3 | - | - | - | - | - | - | 0 | - | 0 14 | 1 |
4 | - | - | - | - | - | 1 | - | 14 | - | 0 1 |
5 | - | - | - | - | - | 0 1 | 1 | - | 14 | - |
6 | - | 0 | - | 14 | 0 14 | - | - | - | - | - |
7 | 0 14 | - | 0 | - | 14 | - | - | - | - | - |
8 | 0 | 0 1 | - | 1 | - | - | - | - | - | - |
9 | - | 0 | 0 1 | - | 1 | - | - | - | - | - |
10 | 0 | - | 14 | 0 14 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 12 | - | - | - | - | - | - | - | 0 6 |
2 | 0 3 | - | 0 9 | - | - | - | - | - | - | - |
3 | - | 0 6 | - | 9 12 | - | - | - | - | - | - |
4 | - | - | 3 6 | - | 0 9 | - | - | - | - | - |
5 | - | - | - | 0 6 | - | 9 12 | - | - | - | - |
6 | - | - | - | - | 3 6 | - | 0 9 | - | - | - |
7 | - | - | - | - | - | 0 6 | - | 9 12 | - | - |
8 | - | - | - | - | - | - | 3 6 | - | 0 9 | - |
9 | - | - | - | - | - | - | - | 0 6 | - | 1 4 |
10 | 0 9 | - | - | - | - | - | - | - | 11 14 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 9 | 0 6 | - | - | - | - | - | - | - | - | - | - | - | - | - |
2 | 0 4 | - | 5 7 | - | - | - | - | - | - | - | - | - | - | - | - |
3 | - | 3 5 | - | 0 6 | - | - | - | - | - | - | - | - | - | - | - |
4 | - | - | 0 4 | - | 6 8 | - | - | - | - | - | - | - | - | - | - |
5 | - | - | - | 2 4 | - | 0 6 | - | - | - | - | - | - | - | - | - |
6 | - | - | - | - | 0 4 | - | 6 8 | - | - | - | - | - | - | - | - |
7 | - | - | - | - | - | 2 4 | - | 0 6 | - | - | - | - | - | - | - |
8 | - | - | - | - | - | - | 0 4 | - | 6 8 | - | - | - | - | - | - |
9 | - | - | - | - | - | - | - | 2 4 | - | 0 6 | - | - | - | - | - |
10 | - | - | - | - | - | - | - | - | 0 4 | - | 6 8 | - | - | - | - |
11 | - | - | - | - | - | - | - | - | - | 2 4 | - | 0 6 | - | - | - |
12 | - | - | - | - | - | - | - | - | - | - | 0 4 | - | 6 8 | - | - |
13 | - | - | - | - | - | - | - | - | - | - | - | 2 4 | - | 0 6 | - |
14 | - | - | - | - | - | - | - | - | - | - | - | - | 0 4 | - | 6 8 |
15 | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 4 | 3 7 |