[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 156, 5 ]. See Glossary for some
detail.
PS( 12, 13; 2) = PS( 12, 13; 6) = PS( 12, 26; 7)
= PS( 12, 26; 11) = MPS( 6, 26; 7) = MPS( 6, 26; 11)
= UG(ATD[156, 3]) = UG(ATD[156, 4]) = MG(Cmap(156, 17) { 12, 12| 6}_ 26)
= MG(Cmap(156, 18) { 12, 12| 6}_ 26) = MG(Cmap(156, 19) { 12, 12| 6}_ 26) =
MG(Cmap(156, 20) { 12, 12| 6}_ 26)
= DG(Cmap( 78, 5) { 12, 12| 3}_ 26) = DG(Cmap( 78, 6) { 12, 12| 3}_ 26) =
DG(Cmap( 78, 7) { 12, 12| 3}_ 26)
= DG(Cmap( 78, 8) { 12, 12| 3}_ 26) = HT[156, 2]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | - | - | 0 | 0 | - | - | - | - | 0 |
2 | 0 | 1 11 | - | 1 | - | - | - | - | - | - | - | - | - |
3 | - | - | - | 0 | - | 0 | - | 0 | 0 | - | - | - | - |
4 | - | 11 | 0 | - | - | 1 | - | 3 | - | - | - | - | - |
5 | - | - | - | - | - | - | - | 2 | 0 | 0 10 | - | - | - |
6 | - | - | 0 | 11 | - | - | - | - | - | 1 | - | 1 | - |
7 | 0 | - | - | - | - | - | - | - | - | 9 | 11 | 11 | - |
8 | 0 | - | 0 | 9 | 10 | - | - | - | - | - | - | - | - |
9 | - | - | 0 | - | 0 | - | - | - | - | - | 11 | 9 | - |
10 | - | - | - | - | 0 2 | 11 | 3 | - | - | - | - | - | - |
11 | - | - | - | - | - | - | 1 | - | 1 | - | - | 9 | 9 |
12 | - | - | - | - | - | 11 | 1 | - | 3 | - | 3 | - | - |
13 | 0 | - | - | - | - | - | - | - | - | - | 3 | - | 1 11 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | - | - | 0 | 0 | - | - | - | - | 0 |
2 | 0 | - | - | - | - | - | - | - | - | - | 1 | - | 1 11 |
3 | - | - | - | - | - | 0 | 0 | - | 0 | - | 0 | - | - |
4 | - | - | - | - | - | - | 2 | - | 0 | - | - | 0 | 10 |
5 | - | - | - | - | 1 11 | 0 | 2 | - | - | - | - | - | - |
6 | - | - | 0 | - | 0 | - | - | - | - | - | 9 | 11 | - |
7 | 0 | - | 0 | 10 | 10 | - | - | - | - | - | - | - | - |
8 | 0 | - | - | - | - | - | - | - | - | 11 | 9 | 1 | - |
9 | - | - | 0 | 0 | - | - | - | - | - | 3 | - | 3 | - |
10 | - | - | - | - | - | - | - | 1 | 9 | 1 11 | - | - | - |
11 | - | 11 | 0 | - | - | 3 | - | 3 | - | - | - | - | - |
12 | - | - | - | 0 | - | 1 | - | 11 | 9 | - | - | - | - |
13 | 0 | 1 11 | - | 2 | - | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | - | 0 16 | - | - | - | 0 8 |
2 | 0 10 | - | 12 18 | - | - | - |
3 | - | 8 14 | - | 4 16 | - | - |
4 | - | - | 10 22 | - | 6 8 | - |
5 | - | - | - | 18 20 | - | 1 5 |
6 | 0 18 | - | - | - | 21 25 | - |