C4graphGraph forms for C4 [ 156, 14 ] = UG(ATD[156,1])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 156, 14 ] = UG(ATD[156,1]).

(I) Following is a form readable by MAGMA:

g:=Graph<156|{ {34, 35}, {128, 129}, {126, 127}, {84, 85}, {1, 2}, {1, 5}, {136, 140}, {128, 132}, {3, 7}, {2, 6}, {26, 31}, {145, 151}, {1, 6}, {136, 143}, {70, 78}, {65, 72}, {22, 28}, {129, 138}, {147, 152}, {134, 141}, {2, 14}, {131, 143}, {99, 111}, {4, 8}, {3, 15}, {86, 88}, {135, 137}, {1, 17}, {3, 18}, {139, 154}, {132, 149}, {77, 92}, {11, 25}, {4, 16}, {5, 17}, {76, 88}, {7, 18}, {128, 149}, {44, 57}, {41, 60}, {13, 24}, {78, 91}, {73, 95}, {138, 156}, {4, 19}, {11, 28}, {67, 91}, {97, 121}, {74, 83}, {102, 127}, {75, 81}, {136, 146}, {76, 86}, {77, 87}, {8, 19}, {36, 63}, {12, 23}, {32, 60}, {34, 62}, {33, 61}, {9, 20}, {129, 156}, {35, 62}, {11, 22}, {71, 89}, {140, 146}, {130, 156}, {76, 82}, {10, 21}, {109, 114}, {71, 88}, {91, 123}, {92, 124}, {21, 52}, {68, 101}, {87, 118}, {12, 46}, {23, 53}, {16, 50}, {13, 47}, {89, 123}, {8, 43}, {67, 96}, {69, 102}, {94, 125}, {28, 56}, {31, 59}, {30, 58}, {29, 57}, {85, 113}, {9, 44}, {68, 97}, {84, 113}, {11, 45}, {79, 105}, {20, 51}, {69, 98}, {10, 32}, {66, 104}, {82, 120}, {83, 121}, {84, 126}, {24, 51}, {84, 127}, {82, 126}, {86, 122}, {5, 40}, {26, 55}, {18, 63}, {7, 42}, {73, 100}, {24, 54}, {6, 41}, {77, 124}, {2, 48}, {3, 49}, {64, 114}, {65, 115}, {70, 116}, {79, 125}, {25, 42}, {15, 59}, {25, 45}, {76, 120}, {78, 123}, {4, 50}, {10, 60}, {66, 116}, {12, 53}, {9, 51}, {30, 36}, {13, 54}, {21, 46}, {95, 100}, {27, 38}, {68, 121}, {75, 118}, {10, 52}, {15, 49}, {14, 48}, {85, 107}, {14, 49}, {74, 117}, {81, 110}, {55, 119}, {40, 105}, {42, 107}, {46, 108}, {41, 106}, {33, 101}, {35, 103}, {34, 102}, {58, 127}, {43, 108}, {22, 94}, {61, 117}, {44, 103}, {59, 112}, {16, 92}, {27, 87}, {19, 95}, {30, 80}, {59, 117}, {56, 118}, {52, 122}, {43, 101}, {38, 104}, {63, 113}, {17, 94}, {53, 122}, {46, 97}, {51, 99}, {26, 72}, {29, 79}, {9, 90}, {39, 116}, {14, 93}, {36, 113}, {58, 111}, {56, 109}, {38, 115}, {27, 77}, {37, 114}, {57, 110}, {47, 119}, {58, 102}, {13, 80}, {57, 103}, {12, 108}, {39, 71}, {37, 71}, {32, 67}, {53, 86}, {48, 83}, {33, 68}, {39, 66}, {37, 64}, {34, 69}, {38, 65}, {33, 73}, {22, 125}, {5, 105}, {49, 93}, {7, 107}, {6, 106}, {8, 101}, {45, 64}, {31, 112}, {56, 87}, {28, 109}, {30, 111}, {40, 90}, {27, 104}, {29, 110}, {20, 96}, {36, 80}, {29, 105}, {21, 97}, {61, 73}, {23, 98}, {44, 90}, {61, 74}, {15, 117}, {48, 74}, {24, 99}, {32, 91}, {31, 100}, {37, 88}, {26, 100}, {39, 89}, {47, 80}, {55, 72}, {16, 144}, {23, 150}, {17, 151}, {25, 145}, {19, 152}, {20, 132}, {18, 139}, {45, 137}, {40, 141}, {41, 133}, {52, 155}, {62, 143}, {63, 139}, {47, 154}, {54, 128}, {54, 129}, {43, 146}, {60, 133}, {35, 153}, {50, 136}, {42, 145}, {50, 143}, {55, 138}, {62, 131}, {79, 142}, {81, 144}, {89, 155}, {70, 130}, {82, 150}, {67, 134}, {75, 142}, {95, 152}, {64, 137}, {69, 140}, {94, 151}, {93, 151}, {92, 144}, {93, 145}, {65, 147}, {81, 131}, {85, 135}, {70, 149}, {66, 148}, {83, 133}, {90, 141}, {72, 147}, {75, 144}, {78, 149}, {123, 155}, {122, 155}, {96, 132}, {124, 152}, {96, 134}, {114, 148}, {106, 141}, {126, 150}, {112, 154}, {106, 134}, {107, 135}, {110, 131}, {119, 154}, {98, 140}, {115, 156}, {124, 147}, {115, 130}, {120, 137}, {125, 142}, {98, 150}, {111, 153}, {116, 130}, {118, 142}, {109, 148}, {99, 153}, {112, 139}, {104, 148}, {121, 133}, {119, 138}, {103, 153}, {108, 146}, {120, 135} }>;

(II) A more general form is to represent the graph as the orbit of {34, 35} under the group generated by the following permutations:

a: (2, 5)(3, 9)(6, 17)(7, 20)(8, 16)(10, 28)(11, 32)(12, 27)(13, 36)(14, 40)(15, 44)(18, 51)(19, 50)(21, 56)(22, 60)(23, 38)(24, 63)(25, 67)(26, 34)(29, 74)(30, 47)(31, 35)(33, 81)(37, 89)(39, 88)(41, 94)(42, 96)(43, 92)(45, 91)(46, 87)(48, 105)(49, 90)(52, 109)(53, 104)(54, 113)(55, 102)(57, 117)(58, 119)(59, 103)(61, 110)(62, 100)(64, 123)(65, 98)(66, 86)(68, 75)(69, 72)(70, 120)(73, 131)(76, 116)(77, 108)(78, 137)(79, 83)(82, 130)(84, 129)(85, 128)(93, 141)(95, 143)(97, 118)(99, 139)(101, 144)(106, 151)(107, 132)(111, 154)(112, 153)(114, 155)(115, 150)(121, 142)(122, 148)(124, 146)(125, 133)(126, 156)(127, 138)(134, 145)(135, 149)(136, 152)(140, 147)
b: (1, 2, 14, 93, 151, 17)(3, 25, 125, 40, 41, 74)(4, 13, 86, 124, 111, 89)(5, 6, 48, 49, 145, 94)(7, 11, 79, 141, 133, 117)(8, 47, 76, 77, 153, 123)(9, 10, 73, 63, 64, 75)(12, 72, 127, 66, 143, 128)(15, 42, 22, 105, 106, 83)(16, 24, 122, 152, 30, 71)(18, 45, 142, 90, 60, 61)(19, 80, 88, 92, 99, 155)(20, 21, 100, 113, 114, 81)(23, 65, 102, 116, 136, 129)(26, 84, 148, 131, 132, 46)(27, 35, 78, 43, 119, 82)(28, 29, 134, 121, 59, 107)(31, 85, 109, 110, 96, 97)(32, 33, 139, 137, 118, 44)(34, 70, 146, 138, 150, 38)(36, 37, 144, 51, 52, 95)(39, 50, 54, 53, 147, 58)(55, 126, 104, 62, 149, 108)(56, 57, 67, 68, 112, 135)(69, 130, 140, 156, 98, 115)(87, 103, 91, 101, 154, 120)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 156, 14 ]
156
-1 2 5 6 17
-2 1 14 48 6
-3 15 49 7 18
-4 16 50 8 19
-5 1 17 105 40
-6 1 2 106 41
-7 3 18 107 42
-8 101 4 19 43
-9 44 90 51 20
-10 60 52 21 32
-11 22 45 25 28
-12 23 46 53 108
-13 24 47 80 54
-14 2 48 49 93
-15 3 59 49 117
-16 144 4 92 50
-17 1 5 94 151
-18 3 7 139 63
-19 4 95 8 152
-20 132 51 96 9
-21 46 52 97 10
-22 11 125 28 94
-23 12 150 53 98
-24 99 13 51 54
-25 11 45 145 42
-26 55 100 72 31
-27 77 38 104 87
-28 11 22 56 109
-29 110 57 79 105
-30 111 36 58 80
-31 100 112 26 59
-32 67 91 60 10
-33 68 101 61 73
-34 35 69 102 62
-35 34 103 62 153
-36 80 113 30 63
-37 88 114 71 64
-38 27 104 115 65
-39 66 89 71 116
-40 90 5 105 141
-41 133 60 6 106
-42 145 25 7 107
-43 101 146 8 108
-44 57 90 103 9
-45 11 25 137 64
-46 12 97 108 21
-47 154 13 80 119
-48 2 14 83 74
-49 3 14 15 93
-50 143 4 136 16
-51 99 24 9 20
-52 122 155 10 21
-53 12 23 122 86
-54 13 24 128 129
-55 26 72 138 119
-56 28 118 87 109
-57 44 110 103 29
-58 111 102 127 30
-59 112 15 117 31
-60 133 41 10 32
-61 33 73 117 74
-62 143 34 35 131
-63 36 113 18 139
-64 45 37 114 137
-65 147 38 115 72
-66 104 148 39 116
-67 134 91 96 32
-68 33 121 101 97
-69 34 102 140 98
-70 78 116 149 130
-71 88 89 37 39
-72 55 26 147 65
-73 33 100 61 95
-74 48 61 83 117
-75 144 81 118 142
-76 88 82 86 120
-77 124 92 27 87
-78 123 91 70 149
-79 125 105 29 142
-80 13 36 47 30
-81 110 144 75 131
-82 126 150 76 120
-83 121 133 48 74
-84 113 126 127 85
-85 113 135 84 107
-86 88 122 53 76
-87 77 56 27 118
-88 37 71 86 76
-89 155 123 71 39
-90 44 40 9 141
-91 67 78 123 32
-92 77 144 124 16
-93 145 14 49 151
-94 22 125 17 151
-95 100 73 19 152
-96 132 67 134 20
-97 121 46 68 21
-98 23 69 150 140
-99 111 24 51 153
-100 26 73 95 31
-101 33 68 8 43
-102 34 58 69 127
-103 44 35 57 153
-104 66 27 38 148
-105 79 5 29 40
-106 134 6 41 141
-107 135 7 85 42
-108 12 46 146 43
-109 56 114 148 28
-110 57 81 29 131
-111 99 58 30 153
-112 154 59 139 31
-113 36 84 63 85
-114 37 148 64 109
-115 156 38 130 65
-116 66 70 39 130
-117 15 59 61 74
-118 56 75 87 142
-119 55 154 47 138
-120 135 82 137 76
-121 133 68 83 97
-122 155 52 53 86
-123 78 89 155 91
-124 77 92 147 152
-125 22 79 94 142
-126 82 127 84 150
-127 58 102 126 84
-128 132 149 129 54
-129 156 138 128 54
-130 156 70 115 116
-131 110 143 81 62
-132 149 128 96 20
-133 121 60 83 41
-134 67 106 96 141
-135 137 85 107 120
-136 143 146 50 140
-137 45 135 64 120
-138 55 156 129 119
-139 154 112 18 63
-140 69 146 136 98
-141 90 134 40 106
-142 79 125 118 75
-143 136 50 62 131
-144 81 92 16 75
-145 25 93 151 42
-146 136 140 108 43
-147 124 72 152 65
-148 66 114 104 109
-149 132 78 70 128
-150 23 82 126 98
-151 145 93 17 94
-152 124 147 95 19
-153 99 111 35 103
-154 112 47 139 119
-155 89 122 123 52
-156 115 138 129 130
0

**************