C4graphGraph forms for C4 [ 157, 1 ] = C_157(1,28)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 157, 1 ] = C_157(1,28).

(I) Following is a form readable by MAGMA:

g:=Graph<157|{ {2, 3}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {1, 2}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {3, 4}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {59, 60}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {7, 8}, {151, 152}, {135, 136}, {119, 120}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104}, {1, 29}, {129, 157}, {128, 156}, {35, 63}, {34, 62}, {33, 61}, {32, 60}, {2, 30}, {3, 31}, {64, 92}, {65, 93}, {66, 94}, {67, 95}, {96, 124}, {97, 125}, {98, 126}, {99, 127}, {15, 16}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {4, 32}, {31, 59}, {5, 33}, {6, 34}, {7, 35}, {12, 40}, {13, 41}, {14, 42}, {15, 43}, {20, 48}, {21, 49}, {22, 50}, {23, 51}, {28, 56}, {29, 57}, {30, 58}, {68, 96}, {69, 97}, {70, 98}, {71, 99}, {76, 104}, {77, 105}, {78, 106}, {79, 107}, {84, 112}, {85, 113}, {86, 114}, {87, 115}, {92, 120}, {93, 121}, {94, 122}, {95, 123}, {8, 36}, {9, 37}, {10, 38}, {11, 39}, {24, 52}, {25, 53}, {26, 54}, {27, 55}, {72, 100}, {73, 101}, {74, 102}, {75, 103}, {88, 116}, {89, 117}, {90, 118}, {91, 119}, {16, 44}, {17, 45}, {18, 46}, {19, 47}, {80, 108}, {81, 109}, {82, 110}, {83, 111}, {31, 32}, {95, 96}, {36, 64}, {60, 88}, {55, 83}, {54, 82}, {53, 81}, {52, 80}, {47, 75}, {46, 74}, {45, 73}, {44, 72}, {39, 67}, {38, 66}, {37, 65}, {61, 89}, {62, 90}, {63, 91}, {40, 68}, {59, 87}, {58, 86}, {57, 85}, {56, 84}, {43, 71}, {42, 70}, {41, 69}, {48, 76}, {51, 79}, {50, 78}, {49, 77}, {63, 64}, {2, 131}, {4, 133}, {6, 135}, {8, 137}, {10, 139}, {12, 141}, {14, 143}, {16, 145}, {18, 147}, {20, 149}, {22, 151}, {24, 153}, {26, 155}, {28, 157}, {1, 130}, {5, 134}, {9, 138}, {13, 142}, {17, 146}, {21, 150}, {25, 154}, {3, 132}, {11, 140}, {19, 148}, {27, 156}, {7, 136}, {23, 152}, {1, 157}, {15, 144}, {100, 128}, {127, 155}, {126, 154}, {125, 153}, {124, 152}, {119, 147}, {118, 146}, {117, 145}, {116, 144}, {101, 129}, {102, 130}, {103, 131}, {108, 136}, {109, 137}, {110, 138}, {111, 139}, {104, 132}, {123, 151}, {122, 150}, {121, 149}, {120, 148}, {105, 133}, {106, 134}, {107, 135}, {112, 140}, {115, 143}, {114, 142}, {113, 141}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 130, 157, 29)(3, 102, 156, 57)(4, 74, 155, 85)(5, 46, 154, 113)(6, 18, 153, 141)(7, 147, 152, 12)(8, 119, 151, 40)(9, 91, 150, 68)(10, 63, 149, 96)(11, 35, 148, 124)(13, 136, 146, 23)(14, 108, 145, 51)(15, 80, 144, 79)(16, 52, 143, 107)(17, 24, 142, 135)(19, 125, 140, 34)(20, 97, 139, 62)(21, 69, 138, 90)(22, 41, 137, 118)(25, 114, 134, 45)(26, 86, 133, 73)(27, 58, 132, 101)(28, 30, 131, 129)(31, 103, 128, 56)(32, 75, 127, 84)(33, 47, 126, 112)(36, 120, 123, 39)(37, 92, 122, 67)(38, 64, 121, 95)(42, 109, 117, 50)(43, 81, 116, 78)(44, 53, 115, 106)(48, 98, 111, 61)(49, 70, 110, 89)(54, 87, 105, 72)(55, 59, 104, 100)(60, 76, 99, 83)(65, 93, 94, 66)(71, 82, 88, 77)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 157, 1 ]
157
-1 2 157 29 130
-2 1 3 30 131
-3 132 2 4 31
-4 133 3 5 32
-5 33 134 4 6
-6 34 135 5 7
-7 35 136 6 8
-8 36 137 7 9
-9 37 138 8 10
-10 11 38 139 9
-11 12 39 140 10
-12 11 13 40 141
-13 12 14 41 142
-14 143 13 15 42
-15 144 14 16 43
-16 44 145 15 17
-17 45 146 16 18
-18 46 147 17 19
-19 47 148 18 20
-20 48 149 19 21
-21 22 49 150 20
-22 23 50 151 21
-23 22 24 51 152
-24 23 25 52 153
-25 154 24 26 53
-26 155 25 27 54
-27 55 156 26 28
-28 56 157 27 29
-29 1 57 28 30
-30 2 58 29 31
-31 3 59 30 32
-32 33 4 60 31
-33 34 5 61 32
-34 33 35 6 62
-35 34 36 7 63
-36 35 37 8 64
-37 36 38 9 65
-38 66 37 39 10
-39 11 67 38 40
-40 12 68 39 41
-41 13 69 40 42
-42 14 70 41 43
-43 44 15 71 42
-44 45 16 72 43
-45 44 46 17 73
-46 45 47 18 74
-47 46 48 19 75
-48 47 49 20 76
-49 77 48 50 21
-50 22 78 49 51
-51 23 79 50 52
-52 24 80 51 53
-53 25 81 52 54
-54 55 26 82 53
-55 56 27 83 54
-56 55 57 28 84
-57 56 58 29 85
-58 57 59 30 86
-59 58 60 31 87
-60 88 59 61 32
-61 33 89 60 62
-62 34 90 61 63
-63 35 91 62 64
-64 36 92 63 65
-65 66 37 93 64
-66 67 38 94 65
-67 66 68 39 95
-68 67 69 40 96
-69 68 70 41 97
-70 69 71 42 98
-71 99 70 72 43
-72 44 100 71 73
-73 45 101 72 74
-74 46 102 73 75
-75 47 103 74 76
-76 77 48 104 75
-77 78 49 105 76
-78 77 79 50 106
-79 78 80 51 107
-80 79 81 52 108
-81 80 82 53 109
-82 110 81 83 54
-83 55 111 82 84
-84 56 112 83 85
-85 57 113 84 86
-86 58 114 85 87
-87 88 59 115 86
-88 89 60 116 87
-89 88 90 61 117
-90 89 91 62 118
-91 90 92 63 119
-92 91 93 64 120
-93 121 92 94 65
-94 66 122 93 95
-95 67 123 94 96
-96 68 124 95 97
-97 69 125 96 98
-98 99 70 126 97
-99 100 71 127 98
-100 99 101 72 128
-101 100 102 73 129
-102 101 103 74 130
-103 102 104 75 131
-104 132 103 105 76
-105 77 133 104 106
-106 78 134 105 107
-107 79 135 106 108
-108 80 136 107 109
-109 110 81 137 108
-110 111 82 138 109
-111 110 112 83 139
-112 111 113 84 140
-113 112 114 85 141
-114 113 115 86 142
-115 143 114 116 87
-116 88 144 115 117
-117 89 145 116 118
-118 90 146 117 119
-119 91 147 118 120
-120 121 92 148 119
-121 122 93 149 120
-122 121 123 94 150
-123 122 124 95 151
-124 123 125 96 152
-125 124 126 97 153
-126 154 125 127 98
-127 99 155 126 128
-128 100 156 127 129
-129 101 157 128 130
-130 1 102 129 131
-131 132 2 103 130
-132 133 3 104 131
-133 132 134 4 105
-134 133 135 5 106
-135 134 136 6 107
-136 135 137 7 108
-137 136 138 8 109
-138 110 137 139 9
-139 111 138 140 10
-140 11 112 139 141
-141 12 113 140 142
-142 143 13 114 141
-143 144 14 115 142
-144 143 145 15 116
-145 144 146 16 117
-146 145 147 17 118
-147 146 148 18 119
-148 147 149 19 120
-149 121 148 150 20
-150 122 149 151 21
-151 22 123 150 152
-152 23 124 151 153
-153 154 24 125 152
-154 155 25 126 153
-155 154 156 26 127
-156 155 157 27 128
-157 1 156 28 129
0

**************