[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 160, 21 ]. See Glossary for some
detail.
MPS( 4, 80; 19) = MPS( 4, 80; 21) = R_ 80( 42, 41)
= R_ 80( 38, 41) = PX( 40, 2) = KE_ 40( 1, 3, 2, 39, 1)
= Curtain_ 40( 1, 20, 1, 2, 22) = CPM( 4, 2, 20, 1) = AMC( 20, 4, [ 0.
1: 3. 3])
= PL(BC_40({ 0, 20 }, { 1, 21 }) = UG(ATD[160, 79]) = UG(ATD[160, 80])
= UG(ATD[160, 86]) = ATD[ 8, 2]#ATD[ 10, 2] = ATD[ 8, 2]#ATD[ 20, 5]
= ATD[ 8, 2]#ATD[ 40, 14] = ATD[ 10, 2]#ATD[ 40, 14] = ATD[ 20,
5]#ATD[ 40, 14]
= ATD[ 40, 14]#DCyc[ 4] = ATD[ 40, 14]#ATD[ 40, 14] = UG(Rmap(320, 28) {
40, 4| 4}_ 40)
= UG(Rmap(320, 31) { 80, 4| 4}_ 80) = UG(Rmap(320,284) { 40, 4| 4}_ 40) =
MG(Rmap(160, 18) { 4, 40| 4}_ 40)
= DG(Rmap(160, 18) { 4, 40| 4}_ 40) = DG(Rmap(160, 20) { 40, 4| 4}_ 40) =
MG(Rmap(160, 21) { 4, 80| 4}_ 80)
= DG(Rmap(160, 21) { 4, 80| 4}_ 80) = DG(Rmap(160, 23) { 80, 4| 4}_ 80) =
BGCG(W( 20, 2); K2;4)
= PL(W( 40, 2)[ 4^ 40]) = BGCG(W( 40, 2); K1;4) = BGCG(MPS( 4, 40; 9); K1;5)
= AT[160, 3]