C4graphConstructions for C4[ 160, 24 ] = PL(MSY(4,20,11,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 160, 24 ]. See Glossary for some detail.

PL(MSY( 4, 20, 11, 0)) = PL(MSY( 4, 20, 9, 0)) = PL(MC3( 4, 20, 1, 19, 9, 0, 1), [4^20, 20^4])

      = PL(MC3( 4, 20, 1, 19, 11, 0, 1), [4^20, 20^4]) = PL(KE_ 20( 1, 11, 2, 11, 1), [4^20, 20^4]) = PL(Curtain_ 20( 1, 10, 8, 17, 18), [4^20, 20^4])

      = PL(Br( 4, 20; 9)) = PL(ATD[ 20, 3]#DCyc[ 4]) = PL(CS(W( 10, 2)[ 20^ 2], 0))

      = PL(CSI(W( 10, 2)[ 20^ 2], 4)) = BGCG(W( 10, 2), C_ 4, {2, 4, 5, 7', 8'}) = SS[160, 2]

     

Cyclic coverings

mod 20:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - 9 0 0 0
3 - - - - 11 0 0 2
4 - - - - - - 0 1 11 12
5 0 19 11 9 - - - - -
6 0 19 0 0 - - - - -
7 - 0 0 0 19 - - - -
8 - 0 18 8 9 - - - -

mod 20:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 11 12
4 - - - - 19 0 11 10
5 0 0 19 1 - - - -
6 0 0 0 0 - - - -
7 0 18 9 9 - - - -
8 0 18 8 10 - - - -

mod 20:
12345678
1 - - - - 0 1 0 11 - -
2 - - - - 0 0 0 0
3 - - - - - - 0 9 0 19
4 - - - - 17 7 9 19
5 0 19 0 - 3 - - - -
6 0 9 0 - 13 - - - -
7 - 0 0 11 11 - - - -
8 - 0 0 1 1 - - - -

mod 20:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 9 0 9 -
3 - - - - - - 0 1 0 1
4 - - - - 0 9 - - 0 9
5 0 19 - - 0 11 - - - -
6 0 19 0 11 - - - - - -
7 - 0 11 0 19 - - - - -
8 - - 0 19 0 11 - - - -

mod 20:
12345678
1 - - - - 0 0 - 0 5
2 - - - - 0 0 0 5 -
3 - - - - 1 11 0 5 -
4 - - - - 1 11 - 12 17
5 0 0 19 19 - - - -
6 0 0 9 9 - - - -
7 - 0 15 0 15 - - - - -
8 0 15 - - 3 8 - - - -