[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 160, 48 ] =
UG(ATD[160,17]).
(I) Following is a form readable by MAGMA:
g:=Graph<160|{ {32, 33}, {88, 89}, {1, 2}, {37, 38}, {84, 87}, {1, 5}, {3, 7},
{2, 6}, {122, 127}, {138, 143}, {133, 142}, {4, 8}, {99, 110}, {144, 157}, {130,
143}, {64, 78}, {145, 159}, {140, 156}, {102, 119}, {103, 118}, {2, 16}, {15,
29}, {14, 28}, {11, 25}, {10, 24}, {7, 21}, {6, 20}, {3, 17}, {105, 122}, {44,
56}, {143, 155}, {129, 149}, {66, 86}, {1, 20}, {37, 48}, {4, 18}, {96, 118},
{13, 27}, {12, 26}, {5, 19}, {132, 147}, {134, 145}, {34, 59}, {135, 158}, {129,
152}, {44, 54}, {45, 55}, {75, 80}, {139, 144}, {133, 153}, {131, 158}, {8, 22},
{137, 151}, {9, 23}, {77, 82}, {135, 152}, {133, 154}, {128, 159}, {78, 81},
{85, 117}, {24, 57}, {31, 62}, {30, 63}, {28, 61}, {26, 59}, {70, 103}, {89,
120}, {11, 41}, {21, 55}, {67, 97}, {16, 51}, {30, 61}, {29, 62}, {25, 58}, {75,
111}, {85, 113}, {8, 45}, {22, 51}, {19, 54}, {17, 52}, {10, 47}, {14, 40}, {9,
46}, {27, 60}, {18, 53}, {27, 50}, {89, 112}, {90, 115}, {92, 117}, {66, 104},
{82, 120}, {7, 44}, {64, 107}, {6, 43}, {141, 160}, {92, 113}, {94, 115}, {22,
56}, {5, 42}, {91, 116}, {93, 114}, {19, 35}, {67, 114}, {69, 119}, {76, 126},
{77, 127}, {86, 100}, {72, 123}, {86, 101}, {3, 55}, {67, 119}, {91, 111}, {73,
124}, {95, 106}, {25, 47}, {1, 54}, {23, 32}, {13, 58}, {65, 118}, {74, 125},
{65, 121}, {152, 160}, {5, 63}, {4, 56}, {13, 49}, {12, 48}, {68, 120}, {69,
121}, {93, 97}, {15, 50}, {68, 121}, {71, 122}, {87, 106}, {75, 116}, {18, 82},
{38, 102}, {30, 95}, {36, 101}, {34, 99}, {32, 97}, {28, 94}, {47, 109}, {46,
108}, {43, 105}, {42, 104}, {24, 91}, {33, 98}, {60, 127}, {17, 85}, {52, 112},
{53, 113}, {10, 79}, {25, 92}, {44, 106}, {45, 107}, {26, 93}, {35, 100}, {16,
88}, {52, 124}, {58, 114}, {59, 115}, {60, 116}, {41, 96}, {12, 70}, {49, 123},
{20, 94}, {18, 89}, {39, 108}, {62, 117}, {23, 90}, {46, 99}, {20, 90}, {41,
103}, {7, 87}, {45, 125}, {23, 71}, {26, 72}, {48, 98}, {37, 119}, {59, 104},
{58, 110}, {60, 105}, {62, 107}, {14, 88}, {32, 118}, {61, 106}, {63, 104}, {21,
77}, {29, 69}, {22, 76}, {51, 111}, {29, 67}, {31, 64}, {49, 110}, {16, 112},
{34, 66}, {33, 65}, {36, 69}, {40, 73}, {38, 71}, {53, 84}, {37, 70}, {41, 74},
{57, 93}, {61, 88}, {35, 68}, {52, 83}, {9, 97}, {19, 120}, {2, 111}, {36, 74},
{17, 126}, {39, 72}, {56, 73}, {57, 72}, {63, 78}, {3, 112}, {4, 113}, {11,
125}, {39, 81}, {57, 79}, {28, 100}, {40, 80}, {11, 114}, {13, 116}, {15, 117},
{50, 79}, {12, 115}, {31, 96}, {54, 73}, {14, 142}, {33, 160}, {8, 139}, {21,
150}, {27, 158}, {24, 145}, {30, 146}, {10, 155}, {9, 154}, {31, 137}, {15,
147}, {6, 153}, {43, 138}, {40, 138}, {42, 142}, {35, 137}, {46, 132}, {53,
158}, {42, 154}, {43, 155}, {50, 131}, {51, 130}, {55, 131}, {48, 133}, {36,
146}, {47, 150}, {38, 156}, {39, 157}, {34, 159}, {49, 143}, {64, 128}, {70,
132}, {74, 136}, {80, 149}, {81, 148}, {68, 140}, {95, 151}, {84, 156}, {75,
129}, {94, 148}, {92, 150}, {65, 140}, {76, 130}, {83, 157}, {90, 149}, {81,
128}, {66, 144}, {95, 141}, {71, 149}, {76, 159}, {84, 135}, {83, 134}, {83,
139}, {87, 140}, {78, 146}, {79, 147}, {85, 136}, {91, 134}, {80, 142}, {82,
141}, {86, 137}, {107, 139}, {122, 156}, {123, 157}, {127, 150}, {109, 135},
{110, 132}, {102, 141}, {121, 146}, {109, 129}, {77, 160}, {101, 136}, {100,
148}, {105, 153}, {102, 151}, {99, 145}, {103, 147}, {101, 144}, {108, 154},
{126, 136}, {124, 138}, {109, 155}, {96, 151}, {108, 148}, {123, 130}, {98,
152}, {124, 134}, {98, 153}, {125, 131}, {126, 128} }>;
(II) A more general form is to represent the graph as the orbit of {32, 33}
under the group generated by the following permutations:
a: (1, 2, 6, 20)(3, 10, 32, 78)(4, 13, 37, 86)(5, 16, 43, 90)(7, 24, 33, 81)(8,
27, 70, 137)(9, 30, 52, 109)(11, 29, 74, 117)(12, 35, 22, 60)(14, 40, 80,
142)(15, 41, 62, 125)(17, 47, 97, 146)(18, 49, 38, 66)(19, 51, 105, 115)(21, 57,
65, 128)(23, 63, 112, 155)(25, 67, 36, 85)(26, 68, 76, 127)(28, 73, 75, 133)(31,
45, 50, 103)(34, 82, 123, 156)(39, 87, 145, 160)(42, 88, 138, 149)(44, 91, 98,
148)(46, 95, 83, 135)(48, 100, 56, 116)(53, 110, 102, 144)(54, 111, 153, 94)(55,
79, 118, 64)(58, 119, 101, 113)(59, 120, 130, 122)(61, 124, 129, 154)(69, 136,
92, 114)(71, 104, 89, 143)(72, 140, 159, 77)(84, 99, 141, 157)(93, 121, 126,
150)(96, 107, 131, 147)(106, 134, 152, 108)(132, 151, 139, 158) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(3, 9)(4, 12)(6, 19)(7, 23)(8, 26)(10, 31)(13, 36)(16, 42)(17, 46)(18,
48)(20, 54)(21, 32)(22, 59)(24, 64)(25, 41)(27, 69)(28, 40)(29, 50)(30, 75)(33,
77)(34, 76)(35, 43)(37, 53)(38, 84)(39, 83)(44, 90)(45, 93)(47, 96)(49, 101)(51,
104)(52, 108)(55, 97)(56, 115)(57, 107)(58, 74)(60, 121)(61, 80)(62, 79)(63,
111)(65, 127)(66, 130)(67, 131)(68, 105)(70, 113)(71, 87)(72, 139)(73, 94)(78,
91)(81, 134)(82, 98)(85, 132)(86, 143)(88, 142)(89, 133)(92, 103)(95, 129)(99,
126)(100, 138)(102, 135)(106, 149)(109, 151)(110, 136)(112, 154)(114, 125)(116,
146)(117, 147)(118, 150)(119, 158)(120, 153)(122, 140)(123, 144)(124, 148)(128,
145)(137, 155)(141, 152)
C4[ 160, 48 ]
160
-1 2 5 20 54
-2 1 111 16 6
-3 55 112 17 7
-4 56 113 18 8
-5 1 19 63 42
-6 2 20 43 153
-7 44 3 21 87
-8 22 45 4 139
-9 154 23 46 97
-10 155 24 79 47
-11 25 114 125 41
-12 26 48 70 115
-13 58 27 49 116
-14 88 28 40 142
-15 147 50 29 117
-16 88 2 112 51
-17 3 126 52 85
-18 89 4 82 53
-19 35 5 54 120
-20 1 90 6 94
-21 55 77 7 150
-22 56 51 8 76
-23 90 71 9 32
-24 57 145 91 10
-25 11 47 58 92
-26 12 59 93 72
-27 13 158 60 50
-28 100 14 61 94
-29 67 69 15 62
-30 146 61 95 63
-31 137 62 96 64
-32 33 23 118 97
-33 160 32 65 98
-34 66 99 59 159
-35 100 68 137 19
-36 101 69 146 74
-37 48 70 38 119
-38 156 102 37 71
-39 157 81 72 108
-40 14 80 138 73
-41 11 103 74 96
-42 154 5 104 142
-43 155 6 105 138
-44 56 7 106 54
-45 55 125 8 107
-46 99 132 9 108
-47 25 150 10 109
-48 12 133 37 98
-49 110 143 13 123
-50 79 15 27 131
-51 22 111 16 130
-52 112 124 17 83
-53 113 158 18 84
-54 44 1 73 19
-55 45 3 21 131
-56 22 44 4 73
-57 24 79 93 72
-58 110 13 25 114
-59 34 26 104 115
-60 27 105 116 127
-61 88 28 106 30
-62 29 117 107 31
-63 78 5 104 30
-64 78 128 107 31
-65 33 121 118 140
-66 34 144 104 86
-67 114 29 97 119
-68 121 35 140 120
-69 121 36 29 119
-70 132 12 37 103
-71 23 122 38 149
-72 57 123 26 39
-73 56 124 40 54
-74 36 125 136 41
-75 111 80 116 129
-76 22 126 159 130
-77 82 127 160 21
-78 146 81 63 64
-79 57 147 50 10
-80 149 40 75 142
-81 78 148 39 128
-82 77 18 141 120
-83 134 157 139 52
-84 156 135 53 87
-85 113 136 17 117
-86 66 100 101 137
-87 7 84 106 140
-88 89 14 16 61
-89 88 112 18 120
-90 23 115 149 20
-91 111 24 134 116
-92 25 113 117 150
-93 57 26 114 97
-94 115 148 28 20
-95 106 30 151 141
-96 41 118 151 31
-97 67 93 9 32
-98 33 48 152 153
-99 110 34 46 145
-100 35 148 28 86
-101 144 36 136 86
-102 38 151 119 141
-103 70 147 41 118
-104 66 59 63 42
-105 122 60 43 153
-106 44 61 95 87
-107 45 62 139 64
-108 154 46 148 39
-109 155 47 135 129
-110 99 132 58 49
-111 2 91 51 75
-112 89 3 16 52
-113 4 92 85 53
-114 11 67 58 93
-115 12 90 59 94
-116 13 91 60 75
-117 15 92 62 85
-118 103 96 32 65
-119 67 69 102 37
-120 89 68 82 19
-121 68 69 146 65
-122 156 71 105 127
-123 157 49 72 130
-124 134 138 73 52
-125 11 45 74 131
-126 136 17 128 76
-127 77 122 60 150
-128 81 126 159 64
-129 149 75 152 109
-130 143 123 51 76
-131 55 125 158 50
-132 110 46 70 147
-133 154 48 142 153
-134 145 91 124 83
-135 158 84 152 109
-136 101 126 74 85
-137 35 151 31 86
-138 143 124 40 43
-139 144 83 8 107
-140 68 156 65 87
-141 102 82 160 95
-142 133 14 80 42
-143 155 49 138 130
-144 66 101 157 139
-145 99 24 134 159
-146 121 78 36 30
-147 132 79 15 103
-148 100 81 94 108
-149 90 80 71 129
-150 47 92 127 21
-151 102 137 95 96
-152 135 160 129 98
-153 133 6 105 98
-154 133 9 42 108
-155 143 10 43 109
-156 122 38 84 140
-157 144 123 39 83
-158 135 27 53 131
-159 34 145 128 76
-160 33 77 141 152
0