C4graphGraph forms for C4 [ 160, 71 ] = BGCG(KE_20(1,9,7,13,4);K1;2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 160, 71 ] = BGCG(KE_20(1,9,7,13,4);K1;2).

(I) Following is a form readable by MAGMA:

g:=Graph<160|{ {67, 83}, {68, 84}, {66, 83}, {69, 84}, {79, 92}, {73, 93}, {67, 86}, {71, 81}, {69, 93}, {64, 89}, {72, 81}, {67, 90}, {66, 91}, {66, 94}, {71, 90}, {65, 94}, {78, 110}, {79, 111}, {74, 107}, {73, 107}, {74, 104}, {77, 110}, {79, 101}, {65, 106}, {78, 101}, {75, 103}, {74, 103}, {70, 104}, {76, 99}, {69, 116}, {71, 117}, {80, 99}, {77, 121}, {65, 116}, {65, 125}, {64, 125}, {75, 117}, {78, 112}, {80, 111}, {51, 115}, {54, 118}, {45, 108}, {61, 124}, {31, 93}, {62, 124}, {54, 116}, {24, 91}, {33, 98}, {50, 113}, {61, 121}, {38, 99}, {31, 89}, {16, 87}, {38, 97}, {29, 90}, {32, 104}, {37, 109}, {48, 120}, {21, 92}, {50, 123}, {60, 117}, {20, 95}, {27, 87}, {43, 102}, {45, 99}, {62, 112}, {46, 96}, {25, 86}, {5, 85}, {3, 82}, {39, 118}, {4, 85}, {44, 125}, {54, 103}, {35, 113}, {48, 98}, {59, 104}, {33, 117}, {53, 97}, {59, 111}, {2, 87}, {41, 124}, {42, 127}, {43, 126}, {47, 122}, {60, 105}, {4, 82}, {36, 115}, {61, 106}, {46, 121}, {57, 110}, {40, 112}, {50, 106}, {46, 119}, {52, 109}, {2, 88}, {3, 88}, {41, 114}, {32, 125}, {1, 95}, {39, 121}, {53, 107}, {58, 100}, {47, 112}, {58, 101}, {2, 98}, {12, 109}, {29, 124}, {27, 122}, {51, 81}, {52, 86}, {56, 90}, {58, 88}, {20, 119}, {63, 92}, {28, 120}, {48, 84}, {3, 102}, {62, 91}, {30, 123}, {9, 108}, {7, 97}, {63, 89}, {10, 108}, {14, 105}, {56, 95}, {58, 93}, {12, 100}, {31, 119}, {26, 114}, {51, 91}, {22, 127}, {63, 86}, {23, 126}, {59, 82}, {60, 85}, {8, 98}, {10, 96}, {6, 109}, {11, 96}, {13, 97}, {48, 92}, {27, 116}, {25, 105}, {36, 84}, {6, 119}, {34, 83}, {22, 103}, {11, 122}, {43, 89}, {1, 114}, {23, 100}, {45, 94}, {12, 120}, {27, 111}, {15, 123}, {4, 113}, {39, 82}, {25, 108}, {14, 123}, {13, 120}, {5, 115}, {39, 81}, {18, 100}, {12, 122}, {8, 126}, {17, 102}, {25, 110}, {7, 127}, {14, 118}, {11, 115}, {6, 127}, {7, 126}, {26, 96}, {28, 102}, {10, 113}, {36, 95}, {15, 114}, {40, 85}, {23, 106}, {20, 105}, {42, 87}, {46, 83}, {8, 118}, {38, 88}, {21, 107}, {26, 101}, {33, 94}, {11, 138}, {30, 159}, {21, 151}, {35, 160}, {9, 140}, {24, 157}, {16, 149}, {18, 148}, {16, 151}, {19, 148}, {5, 141}, {13, 132}, {31, 149}, {28, 145}, {21, 155}, {29, 147}, {3, 140}, {4, 139}, {18, 130}, {17, 131}, {23, 133}, {16, 131}, {30, 141}, {17, 130}, {9, 157}, {26, 142}, {8, 157}, {29, 139}, {19, 132}, {22, 129}, {55, 160}, {1, 153}, {2, 154}, {18, 139}, {30, 135}, {15, 149}, {1, 154}, {17, 138}, {9, 146}, {22, 138}, {28, 128}, {24, 132}, {6, 155}, {15, 146}, {14, 147}, {10, 151}, {5, 155}, {24, 134}, {19, 141}, {13, 147}, {7, 153}, {40, 136}, {45, 141}, {43, 137}, {49, 147}, {54, 148}, {32, 131}, {33, 130}, {57, 154}, {42, 143}, {55, 146}, {51, 149}, {55, 145}, {57, 159}, {44, 139}, {35, 143}, {36, 137}, {42, 135}, {34, 140}, {50, 156}, {49, 158}, {56, 151}, {49, 129}, {44, 157}, {34, 144}, {41, 155}, {55, 133}, {19, 160}, {57, 138}, {20, 160}, {44, 152}, {35, 150}, {34, 148}, {47, 153}, {52, 131}, {53, 130}, {63, 135}, {32, 153}, {62, 135}, {41, 144}, {47, 150}, {38, 156}, {40, 146}, {37, 158}, {53, 142}, {52, 136}, {60, 128}, {37, 152}, {61, 128}, {49, 140}, {56, 134}, {37, 154}, {59, 132}, {72, 136}, {64, 129}, {73, 136}, {77, 143}, {74, 137}, {73, 143}, {78, 137}, {76, 133}, {68, 142}, {76, 134}, {77, 134}, {64, 142}, {75, 133}, {80, 128}, {80, 129}, {68, 150}, {66, 145}, {75, 152}, {67, 150}, {70, 145}, {79, 152}, {72, 159}, {70, 158}, {72, 144}, {70, 156}, {68, 159}, {71, 156}, {69, 158}, {76, 144} }>;

(II) A more general form is to represent the graph as the orbit of {67, 83} under the group generated by the following permutations:

a: (2, 41)(3, 34)(4, 54)(5, 27)(6, 16)(7, 56)(8, 29)(9, 49)(10, 22)(12, 51)(13, 24)(14, 44)(15, 37)(17, 46)(18, 39)(19, 59)(20, 32)(21, 42)(23, 71)(25, 64)(26, 57)(28, 66)(30, 79)(31, 52)(33, 61)(35, 74)(36, 47)(38, 76)(40, 69)(43, 67)(45, 80)(48, 62)(50, 75)(53, 77)(55, 70)(58, 72)(60, 65)(68, 78)(81, 100)(82, 148)(83, 102)(84, 112)(85, 116)(86, 89)(87, 155)(88, 144)(90, 126)(91, 120)(92, 135)(93, 136)(94, 128)(95, 153)(96, 138)(97, 134)(98, 124)(101, 159)(103, 113)(104, 160)(105, 125)(106, 117)(107, 143)(108, 129)(109, 149)(110, 142)(111, 141)(114, 154)(115, 122)(118, 139)(119, 131)(121, 130)(123, 152)(127, 151)(133, 156)(137, 150)(146, 158)(147, 157)
b: (1, 2, 33, 66, 46, 6, 7, 38, 71, 51, 11, 12, 23, 76, 56, 16, 17, 28, 61, 41)(3, 60, 62, 26, 37, 8, 45, 67, 31, 22, 13, 50, 72, 36, 27, 18, 55, 77, 21, 32)(4, 40, 78, 79, 44, 9, 25, 63, 64, 49, 14, 30, 68, 69, 54, 19, 35, 73, 74, 59)(5, 47, 58, 75, 24, 10, 52, 43, 80, 29, 15, 57, 48, 65, 34, 20, 42, 53, 70, 39)(81, 115, 122, 100, 133, 134, 151, 131, 102, 128, 124, 114, 154, 98, 94, 83, 119, 127, 97, 156)(82, 85, 112, 101, 152, 157, 108, 86, 89, 129, 147, 123, 159, 84, 116, 148, 160, 143, 107, 104)(87, 130, 145, 121, 155, 153, 88, 117, 91, 96, 109, 126, 99, 90, 149, 138, 120, 106, 144, 95)(92, 125, 140, 105, 135, 142, 158, 118, 141, 150, 93, 103, 132, 113, 136, 137, 111, 139, 146, 110)
c: (2, 41, 32, 20)(3, 61, 59, 60)(4, 28, 39, 80)(5, 17, 46, 27)(6, 16)(7, 56, 37, 15)(8, 76, 44, 55)(9, 23, 24, 75)(10, 12, 51, 22)(13, 71, 49, 50)(14, 38, 29, 70)(18, 66, 54, 45)(19, 33, 34, 65)(21, 52, 31, 42)(25, 58, 62, 74)(26, 47, 36, 57)(30, 53, 67, 69)(35, 48, 72, 64)(40, 43, 77, 79)(63, 73)(81, 129, 113, 120)(82, 128)(83, 116, 141, 130)(84, 159, 142, 150)(85, 102, 121, 111)(86, 93, 135, 107)(87, 155, 131, 119)(88, 124, 104, 105)(89, 143, 92, 136)(90, 158, 123, 97)(91, 103, 108, 100)(94, 148)(95, 154, 114, 153)(96, 122, 115, 138)(98, 144, 125, 160)(99, 139, 145, 118)(101, 112, 137, 110)(106, 132, 117, 140)(109, 149, 127, 151)(126, 134, 152, 146)(133, 157)(147, 156)
d: (2, 20)(3, 19)(4, 18)(5, 17)(6, 16)(7, 15)(8, 14)(9, 13)(10, 12)(21, 52)(22, 51)(23, 50)(24, 49)(25, 48)(26, 47)(27, 46)(28, 45)(29, 44)(30, 43)(31, 42)(32, 41)(33, 60)(34, 59)(35, 58)(36, 57)(37, 56)(38, 55)(39, 54)(40, 53)(61, 65)(62, 64)(66, 80)(67, 79)(68, 78)(69, 77)(70, 76)(71, 75)(72, 74)(81, 103)(82, 148)(83, 111)(84, 110)(85, 130)(86, 92)(87, 119)(88, 160)(89, 135)(90, 152)(91, 129)(93, 143)(94, 128)(95, 154)(96, 122)(97, 146)(98, 105)(99, 145)(100, 113)(101, 150)(102, 141)(104, 144)(107, 136)(108, 120)(109, 151)(112, 142)(114, 153)(115, 138)(116, 121)(123, 126)(124, 125)(127, 149)(131, 155)(132, 140)(133, 156)(134, 158)(137, 159)(147, 157)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 160, 71 ]
160
-1 154 114 95 153
-2 88 154 87 98
-3 88 102 82 140
-4 113 82 139 85
-5 155 115 85 141
-6 155 127 119 109
-7 126 127 97 153
-8 157 126 118 98
-9 146 157 140 108
-10 113 96 151 108
-11 122 115 138 96
-12 100 122 109 120
-13 132 147 97 120
-14 123 147 105 118
-15 123 146 114 149
-16 149 151 87 131
-17 102 138 130 131
-18 100 148 139 130
-19 132 148 160 141
-20 105 160 95 119
-21 155 92 107 151
-22 103 127 138 129
-23 100 133 126 106
-24 132 134 91 157
-25 110 105 86 108
-26 101 114 96 142
-27 111 122 116 87
-28 145 102 128 120
-29 90 124 147 139
-30 123 135 159 141
-31 89 93 149 119
-32 125 104 131 153
-33 94 117 130 98
-34 144 148 83 140
-35 143 113 160 150
-36 115 137 84 95
-37 154 158 152 109
-38 88 99 156 97
-39 121 81 82 118
-40 112 146 136 85
-41 144 155 124 114
-42 143 135 127 87
-43 89 102 126 137
-44 157 125 139 152
-45 99 94 108 141
-46 121 83 96 119
-47 122 112 150 153
-48 92 84 98 120
-49 147 158 129 140
-50 123 156 113 106
-51 91 81 115 149
-52 136 86 109 131
-53 107 97 130 142
-54 103 148 116 118
-55 133 145 146 160
-56 90 134 95 151
-57 110 154 159 138
-58 88 100 101 93
-59 132 111 82 104
-60 105 117 128 85
-61 121 124 106 128
-62 112 91 124 135
-63 89 135 92 86
-64 89 125 129 142
-65 125 94 116 106
-66 145 91 83 94
-67 90 83 150 86
-68 159 84 150 142
-69 158 93 116 84
-70 145 156 158 104
-71 90 156 81 117
-72 144 81 136 159
-73 143 136 93 107
-74 103 104 137 107
-75 133 103 117 152
-76 99 133 144 134
-77 110 121 143 134
-78 110 101 112 137
-79 111 101 92 152
-80 99 111 128 129
-81 71 39 72 51
-82 3 4 59 39
-83 66 34 67 46
-84 68 36 69 48
-85 4 5 60 40
-86 67 25 52 63
-87 2 16 27 42
-88 2 3 58 38
-89 63 31 64 43
-90 56 67 71 29
-91 66 24 51 62
-92 79 48 63 21
-93 58 69 73 31
-94 33 66 45 65
-95 1 56 36 20
-96 11 46 26 10
-97 13 38 7 53
-98 33 2 48 8
-99 45 80 38 76
-100 12 23 58 18
-101 78 79 58 26
-102 3 17 28 43
-103 22 74 75 54
-104 59 70 74 32
-105 14 25 60 20
-106 23 50 61 65
-107 73 74 53 21
-108 45 25 9 10
-109 12 37 6 52
-110 77 78 57 25
-111 79 80 59 27
-112 78 47 40 62
-113 35 4 50 10
-114 1 15 26 41
-115 11 36 5 51
-116 69 27 54 65
-117 33 60 71 75
-118 14 39 8 54
-119 46 6 20 31
-120 12 13 48 28
-121 77 46 39 61
-122 11 12 47 27
-123 14 15 50 30
-124 61 29 62 41
-125 44 64 32 65
-126 23 7 8 43
-127 22 6 7 42
-128 80 60 28 61
-129 22 80 49 64
-130 33 17 18 53
-131 16 17 52 32
-132 13 24 59 19
-133 55 23 75 76
-134 77 56 24 76
-135 62 30 63 42
-136 72 40 73 52
-137 78 36 74 43
-138 11 22 57 17
-139 44 4 18 29
-140 34 3 49 9
-141 45 5 19 30
-142 68 26 53 64
-143 77 35 73 42
-144 34 72 41 76
-145 55 66 70 28
-146 55 15 40 9
-147 13 14 49 29
-148 34 18 19 54
-149 15 16 51 31
-150 67 35 68 47
-151 56 16 10 21
-152 44 79 37 75
-153 1 47 7 32
-154 1 2 57 37
-155 5 6 41 21
-156 70 38 71 50
-157 44 24 8 9
-158 69 37 70 49
-159 57 68 72 30
-160 55 35 19 20
0

**************