[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 162, 3 ]. See Glossary for some
detail.
{4, 4}_ 9, 9 = PS( 18, 9; 1) = PS( 9, 18; 1)
= PS( 18, 18; 1) = CPM( 9, 2, 1, 1) = CPM( 9, 2, 1, 2)
= AMC( 2, 9, [ 1. 5: 3. 1]) = UG(ATD[162, 10]) = UG(ATD[162, 11])
= UG(Rmap(324, 4) { 4, 4| 18}_ 18) = MG(Rmap(162, 3) { 4, 4| 9}_ 18) =
MG(Rmap(162, 43) { 18, 18| 18}_ 18)
= DG(Rmap(162, 43) { 18, 18| 18}_ 18) = MG(Rmap(162, 44) { 18, 18| 18}_ 18) =
DG(Rmap(162, 44) { 18, 18| 18}_ 18)
= MG(Rmap(162, 45) { 18, 18| 2}_ 18) = DG(Rmap(162, 45) { 18, 18| 2}_ 18) =
DG(Rmap(162, 60) { 4, 18| 18}_ 4)
= XI(Rmap( 81, 19) { 9, 18| 18}_ 18) = DG(Rmap( 81, 22) { 18, 9| 18}_ 18) =
B({4, 4}_ 9, 0)
= PL({4, 4}_ 9, 0[ 9^ 18]) = BGCG({4, 4}_ 9, 0; K1;1) = AT[162, 2]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 17 | 0 2 | - | - | - | - | - | - | - |
2 | 0 16 | - | 0 2 | - | - | - | - | - | - |
3 | - | 0 16 | - | 0 2 | - | - | - | - | - |
4 | - | - | 0 16 | - | 0 2 | - | - | - | - |
5 | - | - | - | 0 16 | - | 0 2 | - | - | - |
6 | - | - | - | - | 0 16 | - | 0 2 | - | - |
7 | - | - | - | - | - | 0 16 | - | 0 2 | - |
8 | - | - | - | - | - | - | 0 16 | - | 0 2 |
9 | - | - | - | - | - | - | - | 0 16 | 1 17 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 14 | - | - | - | - | - | - | 0 14 |
2 | 0 4 | - | 0 14 | - | - | - | - | - | - |
3 | - | 0 4 | - | 0 14 | - | - | - | - | - |
4 | - | - | 0 4 | - | 0 14 | - | - | - | - |
5 | - | - | - | 0 4 | - | 0 14 | - | - | - |
6 | - | - | - | - | 0 4 | - | 0 14 | - | - |
7 | - | - | - | - | - | 0 4 | - | 0 14 | - |
8 | - | - | - | - | - | - | 0 4 | - | 1 5 |
9 | 0 4 | - | - | - | - | - | - | 13 17 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | 0 | - | 0 |
2 | 0 | - | 0 | - | 0 | - | - | 0 | - |
3 | - | 0 | - | 4 | - | 0 | - | - | 4 |
4 | 0 | - | 14 | - | 0 | - | 15 | - | - |
5 | - | 0 | - | 0 | - | 0 | - | 15 | - |
6 | - | - | 0 | - | 0 | - | 1 | - | 1 |
7 | 0 | - | - | 3 | - | 17 | - | 0 | - |
8 | - | 0 | - | - | 3 | - | 0 | - | 4 |
9 | 0 | - | 14 | - | - | 17 | - | 14 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 17 | 0 | - | - | - | - | - | - | 0 |
2 | 0 | 1 17 | 0 | - | - | - | - | - | - |
3 | - | 0 | 1 17 | 0 | - | - | - | - | - |
4 | - | - | 0 | 1 17 | 0 | - | - | - | - |
5 | - | - | - | 0 | 1 17 | 0 | - | - | - |
6 | - | - | - | - | 0 | 1 17 | 0 | - | - |
7 | - | - | - | - | - | 0 | 1 17 | 0 | - |
8 | - | - | - | - | - | - | 0 | 1 17 | 9 |
9 | 0 | - | - | - | - | - | - | 9 | 1 17 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | - | - | 1 |
3 | 0 | 17 | - | 0 | 17 | - | - | - | - |
4 | - | 0 | 0 | - | 0 | 17 | - | - | - |
5 | - | - | 1 | 0 | - | 0 | 17 | - | - |
6 | - | - | - | 1 | 0 | - | 0 | 6 | - |
7 | - | - | - | - | 1 | 0 | - | 7 | 7 |
8 | 0 | - | - | - | - | 12 | 11 | - | 1 |
9 | 0 | 17 | - | - | - | - | 11 | 17 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 17 | 0 | - | - | - | 0 | - | - | - |
2 | 0 | - | 0 | - | - | 1 17 | - | - | - |
3 | - | 0 | - | 0 | - | - | 0 2 | - | - |
4 | - | - | 0 | - | 0 | - | - | 0 2 | - |
5 | - | - | - | 0 | 9 | - | - | - | 0 2 |
6 | 0 | 1 17 | - | - | - | - | 1 | - | - |
7 | - | - | 0 16 | - | - | 17 | - | 0 | - |
8 | - | - | - | 0 16 | - | - | 0 | - | 0 |
9 | - | - | - | - | 0 16 | - | - | 0 | 9 |