[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 162, 4 ]. See Glossary for some
detail.
PS( 18, 9; 2) = PS( 18, 9; 4) = PS( 9, 18; 5)
= PS( 9, 18; 7) = PS( 18, 18; 5) = PS( 18, 18; 7)
= MSZ ( 18, 9, 5, 4) = MSZ ( 18, 9, 7, 4) = UG(ATD[162, 1])
= UG(ATD[162, 2]) = MG(Cmap(162, 9) { 18, 18| 18}_ 18) = MG(Cmap(162, 10) {
18, 18| 18}_ 18)
= MG(Cmap(162, 11) { 18, 18| 18}_ 18) = MG(Cmap(162, 12) { 18, 18| 18}_ 18) =
DG(Cmap( 81, 7) { 18, 9| 18}_ 18)
= DG(Cmap( 81, 8) { 18, 9| 18}_ 18) = B(PS( 9, 9; 2)) = HT[162, 1]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 | 0 | - | - | 0 |
2 | 0 | 1 17 | - | 17 | - | - | - | - | - |
3 | - | - | - | 0 | - | 0 16 | 0 | - | - |
4 | - | 1 | 0 | - | - | 15 | - | 17 | - |
5 | 0 | - | - | - | - | - | 1 | 1 3 | - |
6 | 0 | - | 0 2 | 3 | - | - | - | - | - |
7 | - | - | 0 | - | 17 | - | - | 3 | 3 |
8 | - | - | - | 1 | 15 17 | - | 15 | - | - |
9 | 0 | - | - | - | - | - | 15 | - | 1 17 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | 0 | - | 0 | - | 0 |
2 | - | - | - | - | 2 | - | 0 | 0 | 16 |
3 | - | - | 1 17 | 0 | 2 | - | - | - | - |
4 | 0 | - | 0 | - | - | - | 15 | 17 | - |
5 | 0 | 16 | 16 | - | - | - | - | 1 | - |
6 | - | - | - | - | - | 1 17 | 16 | 2 | - |
7 | 0 | 0 | - | 3 | - | 2 | - | - | - |
8 | - | 0 | - | 1 | 17 | 16 | - | - | - |
9 | 0 | 2 | - | - | - | - | - | - | 1 17 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 | 0 | - | - | 0 |
2 | 0 | - | - | - | - | - | 1 | - | 1 17 |
3 | - | - | - | 0 | 0 2 | - | 0 | - | - |
4 | - | - | 0 | - | 1 | - | - | 17 | 15 |
5 | 0 | - | 0 16 | 17 | - | - | - | - | - |
6 | 0 | - | - | - | - | - | 15 | 1 17 | - |
7 | - | 17 | 0 | - | - | 3 | - | 3 | - |
8 | - | - | - | 1 | - | 1 17 | 15 | - | - |
9 | 0 | 1 17 | - | 3 | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 4 | - | - | - | - | - | - | 0 16 |
2 | 0 14 | - | 8 16 | - | - | - | - | - | - |
3 | - | 2 10 | - | 4 6 | - | - | - | - | - |
4 | - | - | 12 14 | - | 8 12 | - | - | - | - |
5 | - | - | - | 6 10 | - | 8 16 | - | - | - |
6 | - | - | - | - | 2 10 | - | 4 6 | - | - |
7 | - | - | - | - | - | 12 14 | - | 8 12 | - |
8 | - | - | - | - | - | - | 6 10 | - | 1 11 |
9 | 0 2 | - | - | - | - | - | - | 7 17 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | - | 0 |
2 | - | - | - | 0 | - | 12 | 0 | 0 | - |
3 | - | - | - | 12 | 0 | - | - | 0 | 12 |
4 | - | 0 | 6 | - | - | - | - | 1 | 7 |
5 | 0 | - | 0 | - | - | - | 7 | - | 13 |
6 | 0 | 6 | - | - | - | - | 1 | 13 | - |
7 | 0 | 0 | - | - | 11 | 17 | - | - | - |
8 | - | 0 | 0 | 17 | - | 5 | - | - | - |
9 | 0 | - | 6 | 11 | 5 | - | - | - | - |