C4graphConstructions for C4[ 162, 4 ] = PS(18,9;2)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 162, 4 ]. See Glossary for some detail.

PS( 18, 9; 2) = PS( 18, 9; 4) = PS( 9, 18; 5)

      = PS( 9, 18; 7) = PS( 18, 18; 5) = PS( 18, 18; 7)

      = MSZ ( 18, 9, 5, 4) = MSZ ( 18, 9, 7, 4) = UG(ATD[162, 1])

      = UG(ATD[162, 2]) = MG(Cmap(162, 9) { 18, 18| 18}_ 18) = MG(Cmap(162, 10) { 18, 18| 18}_ 18)

      = MG(Cmap(162, 11) { 18, 18| 18}_ 18) = MG(Cmap(162, 12) { 18, 18| 18}_ 18) = DG(Cmap( 81, 7) { 18, 9| 18}_ 18)

      = DG(Cmap( 81, 8) { 18, 9| 18}_ 18) = B(PS( 9, 9; 2)) = HT[162, 1]

     

Cyclic coverings

mod 18:
123456789
1 - 0 - - 0 0 - - 0
2 0 1 17 - 17 - - - - -
3 - - - 0 - 0 16 0 - -
4 - 1 0 - - 15 - 17 -
5 0 - - - - - 1 1 3 -
6 0 - 0 2 3 - - - - -
7 - - 0 - 17 - - 3 3
8 - - - 1 15 17 - 15 - -
9 0 - - - - - 15 - 1 17

mod 18:
123456789
1 - - - 0 0 - 0 - 0
2 - - - - 2 - 0 0 16
3 - - 1 17 0 2 - - - -
4 0 - 0 - - - 15 17 -
5 0 16 16 - - - - 1 -
6 - - - - - 1 17 16 2 -
7 0 0 - 3 - 2 - - -
8 - 0 - 1 17 16 - - -
9 0 2 - - - - - - 1 17

mod 18:
123456789
1 - 0 - - 0 0 - - 0
2 0 - - - - - 1 - 1 17
3 - - - 0 0 2 - 0 - -
4 - - 0 - 1 - - 17 15
5 0 - 0 16 17 - - - - -
6 0 - - - - - 15 1 17 -
7 - 17 0 - - 3 - 3 -
8 - - - 1 - 1 17 15 - -
9 0 1 17 - 3 - - - - -

mod 18:
123456789
1 - 0 4 - - - - - - 0 16
2 0 14 - 8 16 - - - - - -
3 - 2 10 - 4 6 - - - - -
4 - - 12 14 - 8 12 - - - -
5 - - - 6 10 - 8 16 - - -
6 - - - - 2 10 - 4 6 - -
7 - - - - - 12 14 - 8 12 -
8 - - - - - - 6 10 - 1 11
9 0 2 - - - - - - 7 17 -

mod 18:
123456789
1 - - - - 0 0 0 - 0
2 - - - 0 - 12 0 0 -
3 - - - 12 0 - - 0 12
4 - 0 6 - - - - 1 7
5 0 - 0 - - - 7 - 13
6 0 6 - - - - 1 13 -
7 0 0 - - 11 17 - - -
8 - 0 0 17 - 5 - - -
9 0 - 6 11 5 - - - -