[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 162, 19 ] =
XI(Rmap(81,32){6,18|6}_9).
(I) Following is a form readable by MAGMA:
g:=Graph<162|{ {72, 106}, {72, 125}, {66, 116}, {67, 121}, {78, 117}, {36, 100},
{42, 106}, {52, 116}, {35, 98}, {36, 101}, {44, 110}, {39, 99}, {59, 127}, {44,
104}, {22, 83}, {29, 88}, {28, 89}, {25, 92}, {26, 92}, {47, 105}, {16, 87},
{47, 103}, {48, 120}, {49, 121}, {53, 125}, {54, 126}, {38, 111}, {62, 119},
{50, 123}, {42, 96}, {37, 110}, {39, 108}, {18, 94}, {50, 126}, {51, 127}, {22,
91}, {32, 109}, {25, 84}, {54, 123}, {33, 111}, {48, 126}, {53, 122}, {62, 113},
{55, 120}, {2, 82}, {15, 95}, {14, 94}, {13, 93}, {12, 92}, {11, 91}, {10, 90},
{9, 89}, {8, 88}, {7, 87}, {6, 86}, {5, 85}, {4, 84}, {3, 83}, {44, 124}, {8,
89}, {10, 91}, {9, 88}, {34, 115}, {1, 83}, {15, 93}, {13, 95}, {52, 102}, {1,
82}, {33, 114}, {35, 112}, {36, 112}, {37, 113}, {38, 114}, {1, 84}, {2, 87},
{1, 86}, {2, 85}, {36, 115}, {2, 90}, {7, 95}, {6, 94}, {5, 93}, {4, 92}, {3,
91}, {43, 115}, {46, 119}, {47, 117}, {55, 109}, {3, 88}, {14, 85}, {5, 94},
{33, 122}, {45, 118}, {33, 125}, {40, 116}, {41, 117}, {42, 118}, {4, 89}, {32,
126}, {37, 123}, {39, 121}, {40, 118}, {41, 119}, {52, 107}, {62, 97}, {14,
110}, {15, 111}, {10, 107}, {29, 124}, {12, 109}, {51, 82}, {18, 112}, {19,
113}, {3, 96}, {30, 125}, {24, 123}, {6, 98}, {21, 113}, {7, 99}, {4, 97}, {10,
108}, {20, 114}, {17, 119}, {16, 118}, {11, 108}, {29, 122}, {51, 84}, {23,
127}, {59, 83}, {13, 100}, {17, 120}, {22, 124}, {12, 103}, {19, 120}, {13,
102}, {8, 100}, {22, 122}, {9, 101}, {5, 104}, {59, 86}, {31, 114}, {20, 121},
{11, 102}, {7, 106}, {52, 90}, {6, 105}, {15, 127}, {27, 107}, {21, 101}, {17,
97}, {16, 96}, {34, 82}, {19, 98}, {27, 106}, {25, 104}, {23, 102}, {43, 90},
{44, 93}, {14, 124}, {21, 103}, {16, 99}, {31, 108}, {26, 105}, {23, 100}, {17,
98}, {28, 104}, {30, 107}, {34, 87}, {35, 86}, {42, 95}, {20, 99}, {26, 109},
{8, 112}, {23, 111}, {12, 117}, {9, 115}, {18, 105}, {21, 110}, {24, 101}, {29,
96}, {28, 97}, {43, 85}, {11, 116}, {24, 103}, {30, 142}, {18, 128}, {19, 129},
{24, 141}, {20, 130}, {30, 134}, {31, 135}, {25, 131}, {61, 161}, {27, 134},
{31, 130}, {26, 132}, {27, 133}, {28, 131}, {39, 135}, {61, 157}, {60, 156},
{54, 150}, {45, 140}, {63, 158}, {58, 155}, {43, 137}, {35, 128}, {57, 154},
{55, 148}, {48, 148}, {49, 149}, {46, 139}, {57, 156}, {63, 153}, {45, 138},
{58, 157}, {32, 136}, {37, 141}, {49, 153}, {60, 150}, {34, 137}, {60, 151},
{47, 132}, {38, 138}, {61, 144}, {56, 150}, {32, 143}, {38, 137}, {50, 128},
{56, 139}, {63, 140}, {54, 131}, {46, 152}, {59, 141}, {40, 144}, {61, 133},
{60, 132}, {58, 130}, {57, 129}, {56, 128}, {41, 145}, {50, 139}, {63, 134},
{40, 146}, {41, 147}, {56, 131}, {53, 137}, {46, 147}, {57, 132}, {49, 140},
{51, 141}, {45, 146}, {62, 129}, {58, 133}, {48, 143}, {53, 138}, {55, 136},
{79, 143}, {70, 135}, {76, 136}, {80, 148}, {67, 134}, {78, 139}, {68, 130},
{72, 142}, {64, 135}, {73, 142}, {66, 138}, {65, 136}, {81, 152}, {69, 143},
{77, 129}, {80, 156}, {72, 133}, {81, 156}, {64, 142}, {80, 158}, {66, 140},
{80, 159}, {81, 158}, {66, 144}, {75, 152}, {65, 149}, {79, 155}, {75, 159},
{70, 146}, {69, 145}, {68, 144}, {79, 154}, {65, 151}, {78, 152}, {71, 145},
{67, 149}, {74, 157}, {77, 154}, {70, 159}, {76, 149}, {74, 147}, {77, 151},
{73, 146}, {77, 150}, {65, 157}, {69, 153}, {67, 158}, {74, 151}, {71, 154},
{69, 155}, {71, 153}, {64, 159}, {78, 145}, {76, 147}, {75, 148}, {68, 155},
{64, 162}, {68, 161}, {71, 162}, {70, 160}, {73, 160}, {74, 160}, {75, 161},
{73, 162}, {76, 160}, {79, 162}, {81, 161} }>;
(II) A more general form is to represent the graph as the orbit of {72, 106}
under the group generated by the following permutations:
a: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 26)(11, 12)(13, 21)(15, 37)(16, 17)(18,
43)(20, 48)(22, 25)(23, 24)(27, 57)(28, 29)(30, 60)(31, 32)(33, 54)(34, 35)(38,
50)(39, 55)(40, 41)(42, 62)(45, 46)(47, 52)(49, 75)(51, 59)(53, 56)(58, 79)(61,
71)(63, 81)(64, 65)(66, 78)(67, 80)(68, 69)(70, 76)(72, 77)(73, 74)(82, 86)(83,
84)(85, 94)(87, 98)(88, 89)(90, 105)(91, 92)(93, 110)(95, 113)(96, 97)(99,
120)(100, 101)(102, 103)(104, 124)(106, 129)(107, 132)(108, 109)(111, 123)(112,
115)(114, 126)(116, 117)(118, 119)(121, 148)(122, 131)(125, 150)(127, 141)(128,
137)(130, 143)(133, 154)(134, 156)(135, 136)(138, 139)(140, 152)(142, 151)(144,
145)(146, 147)(149, 159)(153, 161)(157, 162) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17,
27)(19, 30)(21, 33)(23, 36)(24, 38)(26, 39)(28, 42)(29, 44)(31, 47)(32, 49)(34,
51)(35, 52)(37, 53)(40, 56)(41, 58)(43, 59)(45, 54)(46, 61)(48, 63)(50, 66)(55,
67)(57, 64)(60, 70)(62, 72)(65, 76)(68, 78)(71, 79)(73, 77)(75, 81)(83, 85)(84,
87)(86, 90)(88, 93)(89, 95)(91, 94)(92, 99)(96, 104)(97, 106)(98, 107)(101,
111)(102, 112)(103, 114)(105, 108)(109, 121)(110, 122)(113, 125)(115, 127)(116,
128)(117, 130)(118, 131)(119, 133)(120, 134)(123, 138)(126, 140)(129, 142)(132,
135)(136, 149)(137, 141)(139, 144)(143, 153)(145, 155)(146, 150)(147, 157)(148,
158)(151, 160)(152, 161)(154, 162)(156, 159)
c: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 21)(15, 24)(16, 26)(18,
29)(20, 32)(22, 35)(23, 37)(25, 34)(27, 41)(28, 43)(30, 46)(31, 48)(33, 50)(36,
44)(38, 54)(39, 55)(40, 57)(42, 47)(45, 60)(49, 65)(52, 62)(53, 56)(58, 69)(61,
71)(63, 74)(64, 75)(66, 77)(67, 76)(68, 79)(70, 80)(72, 78)(73, 81)(82, 84)(83,
86)(85, 89)(87, 92)(88, 94)(90, 97)(91, 98)(93, 101)(95, 103)(96, 105)(99,
109)(100, 110)(102, 113)(104, 115)(106, 117)(107, 119)(108, 120)(111, 123)(112,
124)(114, 126)(116, 129)(118, 132)(121, 136)(122, 128)(125, 139)(127, 141)(130,
143)(131, 137)(133, 145)(134, 147)(135, 148)(138, 150)(140, 151)(142, 152)(144,
154)(146, 156)(153, 157)(158, 160)(161, 162)
C4[ 162, 19 ]
162
-1 82 83 84 86
-2 90 82 85 87
-3 88 91 83 96
-4 89 92 84 97
-5 93 104 94 85
-6 94 105 86 98
-7 99 95 106 87
-8 88 89 100 112
-9 88 89 101 115
-10 90 91 107 108
-11 91 102 116 108
-12 92 103 117 109
-13 100 102 93 95
-14 110 124 94 85
-15 111 93 127 95
-16 99 96 118 87
-17 97 119 98 120
-18 112 94 105 128
-19 113 129 98 120
-20 99 121 114 130
-21 110 101 113 103
-22 122 91 124 83
-23 100 111 102 127
-24 101 123 103 141
-25 92 104 84 131
-26 132 92 105 109
-27 133 134 106 107
-28 89 104 97 131
-29 88 122 124 96
-30 134 125 107 142
-31 135 114 108 130
-32 143 136 126 109
-33 111 122 114 125
-34 82 115 137 87
-35 112 128 86 98
-36 100 101 112 115
-37 110 123 113 141
-38 111 114 137 138
-39 99 121 135 108
-40 144 146 116 118
-41 145 147 117 119
-42 95 106 96 118
-43 90 115 137 85
-44 110 124 93 104
-45 146 138 118 140
-46 147 139 119 152
-47 132 103 105 117
-48 143 126 148 120
-49 121 149 140 153
-50 123 126 128 139
-51 82 127 84 141
-52 90 102 116 107
-53 122 125 137 138
-54 123 126 150 131
-55 136 148 109 120
-56 128 139 150 131
-57 132 154 156 129
-58 133 155 157 130
-59 83 127 86 141
-60 132 156 150 151
-61 133 144 157 161
-62 113 129 97 119
-63 134 158 140 153
-64 135 159 162 142
-65 157 136 149 151
-66 144 116 138 140
-67 121 134 158 149
-68 144 155 161 130
-69 143 155 145 153
-70 135 146 159 160
-71 154 145 162 153
-72 133 125 106 142
-73 146 160 162 142
-74 157 147 160 151
-75 148 159 161 152
-76 136 147 149 160
-77 154 150 129 151
-78 145 117 139 152
-79 143 154 155 162
-80 156 158 148 159
-81 156 158 161 152
-82 1 34 2 51
-83 22 1 3 59
-84 1 25 4 51
-85 2 14 5 43
-86 1 35 59 6
-87 34 2 16 7
-88 3 29 8 9
-89 4 28 8 9
-90 2 52 10 43
-91 11 22 3 10
-92 12 25 4 26
-93 44 13 15 5
-94 14 5 6 18
-95 13 15 7 42
-96 3 16 29 42
-97 4 17 28 62
-98 35 6 17 19
-99 16 39 7 20
-100 23 13 36 8
-101 24 36 9 21
-102 11 23 13 52
-103 12 24 47 21
-104 44 25 5 28
-105 47 26 6 18
-106 27 72 7 42
-107 27 30 52 10
-108 11 39 31 10
-109 55 12 26 32
-110 44 14 37 21
-111 33 23 15 38
-112 35 36 18 8
-113 37 62 19 21
-114 33 38 20 31
-115 34 36 9 43
-116 11 66 40 52
-117 12 78 47 41
-118 45 16 40 42
-119 46 17 62 41
-120 55 48 17 19
-121 67 49 39 20
-122 22 33 29 53
-123 24 37 50 54
-124 22 44 14 29
-125 33 72 30 53
-126 48 50 32 54
-127 23 15 59 51
-128 56 35 50 18
-129 77 57 62 19
-130 68 58 20 31
-131 56 25 28 54
-132 57 47 26 60
-133 58 27 61 72
-134 67 27 30 63
-135 70 39 31 64
-136 55 32 65 76
-137 34 38 53 43
-138 66 45 38 53
-139 56 78 46 50
-140 66 45 49 63
-141 24 37 59 51
-142 72 73 30 64
-143 79 69 48 32
-144 66 68 61 40
-145 78 69 71 41
-146 45 70 40 73
-147 46 41 74 76
-148 55 80 48 75
-149 67 49 65 76
-150 77 56 60 54
-151 77 60 74 65
-152 78 46 81 75
-153 69 49 71 63
-154 77 57 79 71
-155 68 79 58 69
-156 57 80 81 60
-157 58 61 74 65
-158 67 80 81 63
-159 80 70 64 75
-160 70 73 74 76
-161 68 81 61 75
-162 79 71 73 64
0