C4graphGraph forms for C4 [ 162, 20 ] = XI(Rmap(81,33){6,18|6}_9)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 162, 20 ] = XI(Rmap(81,33){6,18|6}_9).

(I) Following is a form readable by MAGMA:

g:=Graph<162|{ {81, 84}, {80, 91}, {81, 92}, {70, 86}, {75, 90}, {70, 83}, {68, 83}, {64, 88}, {78, 86}, {77, 87}, {76, 87}, {79, 84}, {79, 82}, {67, 92}, {77, 82}, {68, 91}, {64, 96}, {80, 112}, {69, 101}, {65, 97}, {76, 109}, {73, 106}, {71, 99}, {75, 111}, {66, 101}, {76, 100}, {71, 110}, {73, 96}, {78, 99}, {81, 124}, {67, 113}, {80, 98}, {75, 120}, {73, 127}, {74, 114}, {66, 123}, {66, 120}, {67, 125}, {50, 114}, {36, 102}, {60, 126}, {52, 118}, {28, 95}, {42, 105}, {35, 103}, {56, 124}, {27, 94}, {40, 109}, {53, 112}, {62, 121}, {41, 97}, {54, 126}, {39, 110}, {2, 82}, {15, 95}, {14, 94}, {13, 93}, {12, 92}, {11, 91}, {10, 90}, {9, 89}, {8, 88}, {7, 87}, {6, 86}, {5, 85}, {4, 84}, {3, 83}, {32, 113}, {36, 117}, {42, 123}, {53, 100}, {1, 83}, {33, 115}, {37, 119}, {39, 117}, {45, 127}, {1, 82}, {60, 111}, {37, 118}, {40, 123}, {44, 127}, {46, 122}, {1, 84}, {62, 107}, {2, 87}, {41, 124}, {43, 126}, {55, 98}, {34, 116}, {1, 86}, {2, 85}, {38, 113}, {42, 125}, {2, 90}, {7, 95}, {6, 94}, {5, 93}, {4, 92}, {3, 91}, {35, 122}, {63, 102}, {51, 106}, {49, 107}, {3, 88}, {34, 121}, {35, 120}, {38, 122}, {47, 115}, {4, 89}, {36, 121}, {52, 105}, {50, 108}, {54, 104}, {55, 85}, {3, 96}, {57, 90}, {20, 119}, {11, 104}, {7, 100}, {16, 116}, {23, 115}, {4, 97}, {56, 93}, {19, 118}, {12, 105}, {10, 111}, {8, 109}, {6, 99}, {27, 125}, {5, 98}, {21, 114}, {18, 117}, {9, 110}, {13, 101}, {31, 119}, {54, 95}, {7, 108}, {29, 118}, {57, 85}, {6, 107}, {25, 116}, {10, 103}, {8, 101}, {26, 116}, {51, 93}, {5, 106}, {31, 112}, {24, 119}, {16, 127}, {9, 102}, {49, 94}, {8, 120}, {28, 108}, {20, 100}, {19, 99}, {18, 98}, {17, 97}, {16, 96}, {10, 122}, {9, 121}, {40, 88}, {41, 89}, {13, 124}, {30, 111}, {28, 109}, {26, 107}, {24, 105}, {22, 103}, {15, 126}, {14, 125}, {29, 110}, {25, 106}, {21, 102}, {17, 103}, {12, 123}, {27, 108}, {18, 104}, {11, 112}, {14, 114}, {15, 115}, {12, 113}, {11, 117}, {39, 89}, {23, 104}, {33, 160}, {14, 139}, {15, 137}, {13, 138}, {24, 144}, {28, 148}, {27, 147}, {26, 146}, {25, 145}, {29, 148}, {30, 151}, {30, 146}, {21, 152}, {17, 128}, {19, 130}, {48, 161}, {22, 132}, {31, 141}, {18, 129}, {31, 140}, {51, 160}, {19, 135}, {16, 134}, {30, 136}, {20, 131}, {55, 160}, {23, 143}, {20, 141}, {26, 131}, {22, 140}, {59, 161}, {56, 162}, {29, 135}, {21, 142}, {17, 140}, {63, 162}, {24, 133}, {22, 139}, {23, 137}, {25, 134}, {37, 133}, {38, 134}, {34, 131}, {60, 157}, {50, 147}, {45, 143}, {43, 136}, {38, 130}, {58, 158}, {52, 144}, {33, 132}, {58, 159}, {32, 134}, {63, 153}, {61, 155}, {57, 159}, {48, 150}, {46, 137}, {59, 147}, {32, 137}, {58, 144}, {59, 145}, {42, 129}, {62, 149}, {61, 150}, {48, 155}, {44, 128}, {62, 146}, {61, 145}, {46, 130}, {37, 136}, {45, 128}, {60, 146}, {61, 147}, {49, 158}, {55, 135}, {63, 142}, {44, 159}, {45, 158}, {47, 156}, {40, 156}, {41, 157}, {51, 135}, {35, 150}, {58, 143}, {56, 141}, {47, 154}, {48, 133}, {43, 157}, {53, 131}, {34, 149}, {57, 142}, {46, 153}, {32, 153}, {50, 139}, {53, 140}, {54, 143}, {47, 149}, {33, 154}, {49, 138}, {39, 155}, {43, 151}, {44, 144}, {52, 136}, {59, 133}, {36, 155}, {65, 128}, {67, 129}, {77, 142}, {78, 138}, {65, 132}, {71, 130}, {69, 141}, {65, 139}, {72, 132}, {81, 157}, {69, 138}, {78, 158}, {80, 129}, {74, 152}, {77, 159}, {68, 151}, {74, 153}, {71, 148}, {72, 156}, {79, 154}, {64, 151}, {64, 152}, {76, 148}, {73, 145}, {68, 152}, {70, 154}, {72, 149}, {75, 150}, {66, 156}, {69, 162}, {70, 161}, {72, 160}, {74, 162}, {79, 161} }>;

(II) A more general form is to represent the graph as the orbit of {81, 84} under the group generated by the following permutations:

a: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17, 27)(19, 30)(21, 33)(23, 36)(26, 38)(28, 41)(29, 43)(31, 42)(32, 34)(35, 49)(37, 52)(39, 54)(40, 56)(44, 59)(45, 61)(46, 62)(47, 63)(48, 58)(50, 65)(51, 64)(53, 67)(55, 68)(57, 70)(60, 71)(66, 69)(72, 74)(75, 78)(76, 81)(77, 79)(83, 85)(84, 87)(86, 90)(88, 93)(89, 95)(91, 98)(92, 100)(94, 103)(96, 106)(97, 108)(99, 111)(102, 115)(104, 117)(105, 119)(107, 122)(109, 124)(110, 126)(112, 129)(113, 131)(114, 132)(116, 134)(118, 136)(120, 138)(121, 137)(123, 141)(125, 140)(127, 145)(128, 147)(130, 146)(133, 144)(135, 151)(142, 154)(143, 155)(148, 157)(149, 153)(150, 158)(152, 160)(156, 162)(159, 161)
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20, 31)(22, 34)(24, 37)(25, 35)(27, 39)(29, 42)(30, 44)(32, 46)(33, 47)(36, 50)(40, 55)(41, 49)(43, 58)(45, 60)(48, 59)(51, 66)(56, 69)(57, 64)(62, 65)(63, 74)(67, 71)(68, 77)(70, 79)(73, 75)(76, 80)(78, 81)(82, 83)(84, 86)(85, 88)(87, 91)(89, 94)(90, 96)(92, 99)(93, 101)(95, 104)(97, 107)(98, 109)(100, 112)(102, 114)(103, 116)(105, 118)(106, 120)(108, 117)(110, 125)(111, 127)(113, 130)(121, 139)(122, 134)(123, 135)(124, 138)(126, 143)(128, 146)(129, 148)(131, 140)(132, 149)(136, 144)(142, 152)(145, 150)(147, 155)(151, 159)(156, 160)(157, 158)
c: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 21)(15, 24)(16, 26)(18, 29)(20, 32)(22, 35)(23, 37)(25, 34)(27, 40)(28, 42)(30, 45)(31, 46)(33, 48)(36, 51)(38, 53)(39, 55)(41, 57)(43, 58)(44, 60)(47, 59)(49, 64)(50, 66)(52, 54)(56, 63)(61, 72)(62, 73)(65, 75)(67, 76)(68, 78)(69, 74)(71, 80)(77, 81)(82, 84)(83, 86)(85, 89)(87, 92)(88, 94)(90, 97)(91, 99)(93, 102)(95, 105)(96, 107)(98, 110)(100, 113)(101, 114)(104, 118)(106, 121)(108, 123)(109, 125)(111, 128)(112, 130)(115, 133)(117, 135)(119, 137)(120, 139)(122, 140)(124, 142)(126, 144)(127, 146)(129, 148)(131, 134)(132, 150)(136, 143)(138, 152)(141, 153)(145, 149)(147, 156)(151, 158)(154, 161)(155, 160)(157, 159)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 162, 20 ]
162
-1 82 83 84 86
-2 90 82 85 87
-3 88 91 83 96
-4 89 92 84 97
-5 93 106 85 98
-6 99 94 107 86
-7 100 95 108 87
-8 88 101 109 120
-9 110 121 89 102
-10 111 122 90 103
-11 112 91 104 117
-12 123 113 92 105
-13 101 124 93 138
-14 114 125 94 139
-15 115 126 137 95
-16 134 116 127 96
-17 103 128 140 97
-18 104 117 129 98
-19 99 135 118 130
-20 100 119 141 131
-21 102 114 152 142
-22 132 103 139 140
-23 143 104 115 137
-24 133 144 105 119
-25 134 145 116 106
-26 146 116 107 131
-27 125 147 94 108
-28 148 95 108 109
-29 110 135 148 118
-30 111 146 136 151
-31 112 140 119 141
-32 134 113 137 153
-33 132 154 115 160
-34 121 116 149 131
-35 122 103 150 120
-36 121 155 102 117
-37 133 136 118 119
-38 122 134 113 130
-39 110 89 155 117
-40 88 123 156 109
-41 89 124 157 97
-42 123 125 105 129
-43 157 136 126 151
-44 144 159 127 128
-45 143 158 127 128
-46 122 137 130 153
-47 154 156 115 149
-48 133 155 150 161
-49 158 94 138 107
-50 114 147 139 108
-51 135 93 160 106
-52 144 136 105 118
-53 100 112 140 131
-54 143 104 126 95
-55 135 160 85 98
-56 124 93 162 141
-57 90 159 85 142
-58 143 144 158 159
-59 133 145 147 161
-60 111 146 157 126
-61 155 145 147 150
-62 121 146 149 107
-63 102 162 142 153
-64 88 96 151 152
-65 132 128 139 97
-66 101 123 156 120
-67 113 92 125 129
-68 91 83 151 152
-69 101 138 162 141
-70 154 83 161 86
-71 99 110 148 130
-72 132 156 149 160
-73 145 127 106 96
-74 114 162 152 153
-75 111 90 150 120
-76 100 148 87 109
-77 82 159 87 142
-78 99 158 138 86
-79 154 82 84 161
-80 112 91 129 98
-81 124 157 92 84
-82 77 1 2 79
-83 1 68 3 70
-84 1 79 4 81
-85 55 2 57 5
-86 1 78 70 6
-87 77 2 7 76
-88 3 40 8 64
-89 4 39 41 9
-90 2 57 75 10
-91 11 68 3 80
-92 12 67 4 81
-93 56 13 5 51
-94 14 27 49 6
-95 15 28 7 54
-96 3 16 73 64
-97 4 17 41 65
-98 55 80 5 18
-99 78 71 6 19
-100 7 20 53 76
-101 66 13 69 8
-102 36 63 9 21
-103 22 35 17 10
-104 11 23 18 54
-105 12 24 52 42
-106 25 5 51 73
-107 26 49 6 62
-108 27 28 50 7
-109 28 40 8 76
-110 71 39 29 9
-111 60 30 75 10
-112 11 80 31 53
-113 12 67 38 32
-114 14 50 74 21
-115 33 23 47 15
-116 34 25 26 16
-117 11 36 39 18
-118 37 29 19 52
-119 24 37 20 31
-120 66 35 8 75
-121 34 36 62 9
-122 35 46 38 10
-123 66 12 40 42
-124 56 13 81 41
-125 67 14 27 42
-126 15 60 43 54
-127 44 45 16 73
-128 44 45 17 65
-129 67 80 18 42
-130 46 38 71 19
-131 34 26 20 53
-132 22 33 72 65
-133 24 37 48 59
-134 25 16 38 32
-135 55 29 51 19
-136 37 30 52 43
-137 23 46 15 32
-138 78 13 69 49
-139 22 14 50 65
-140 22 17 31 53
-141 56 69 20 31
-142 77 57 63 21
-143 23 45 58 54
-144 44 24 58 52
-145 25 59 61 73
-146 26 60 62 30
-147 59 27 50 61
-148 71 28 29 76
-149 34 47 72 62
-150 35 48 61 75
-151 68 30 64 43
-152 68 74 64 21
-153 46 63 74 32
-154 33 79 47 70
-155 36 48 39 61
-156 66 47 72 40
-157 81 60 41 43
-158 45 78 58 49
-159 44 77 57 58
-160 33 55 72 51
-161 79 48 59 70
-162 56 69 63 74
0

**************