[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 168, 6 ] =
C_168(1,55).
(I) Following is a form readable by MAGMA:
g:=Graph<168|{ {2, 3}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158,
159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147},
{144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132,
133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121},
{118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {54, 55}, {52, 53},
{50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37},
{4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20,
21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {56,
57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72,
73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88,
89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103},
{104, 105}, {106, 107}, {108, 109}, {1, 2}, {165, 166}, {161, 162}, {157, 158},
{153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129,
130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {53, 54}, {49, 50}, {45,
46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25,
26}, {29, 30}, {33, 34}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77,
78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106},
{109, 110}, {3, 4}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132},
{123, 124}, {115, 116}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35,
36}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108},
{7, 8}, {167, 168}, {151, 152}, {135, 136}, {119, 120}, {39, 40}, {23, 24}, {55,
56}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {143, 144}, {111, 112}, {47, 48},
{79, 80}, {8, 63}, {64, 119}, {72, 127}, {1, 56}, {3, 58}, {5, 60}, {7, 62},
{65, 120}, {67, 122}, {69, 124}, {71, 126}, {2, 57}, {6, 61}, {66, 121}, {70,
125}, {4, 59}, {159, 160}, {31, 32}, {68, 123}, {95, 96}, {9, 64}, {47, 102},
{45, 100}, {43, 98}, {41, 96}, {11, 66}, {13, 68}, {15, 70}, {25, 80}, {27, 82},
{29, 84}, {31, 86}, {57, 112}, {59, 114}, {61, 116}, {63, 118}, {10, 65}, {46,
101}, {42, 97}, {14, 69}, {26, 81}, {30, 85}, {58, 113}, {62, 117}, {12, 67},
{44, 99}, {28, 83}, {60, 115}, {16, 71}, {48, 103}, {24, 79}, {56, 111}, {17,
72}, {53, 108}, {51, 106}, {49, 104}, {19, 74}, {21, 76}, {23, 78}, {55, 110},
{18, 73}, {54, 109}, {50, 105}, {22, 77}, {20, 75}, {52, 107}, {2, 115}, {4,
117}, {6, 119}, {8, 121}, {10, 123}, {12, 125}, {14, 127}, {1, 114}, {5, 118},
{9, 122}, {13, 126}, {3, 116}, {40, 95}, {11, 124}, {32, 87}, {33, 88}, {39,
94}, {37, 92}, {35, 90}, {34, 89}, {38, 93}, {7, 120}, {36, 91}, {63, 64}, {15,
128}, {47, 160}, {31, 144}, {16, 129}, {52, 165}, {50, 163}, {48, 161}, {18,
131}, {20, 133}, {22, 135}, {24, 137}, {26, 139}, {28, 141}, {30, 143}, {54,
167}, {17, 130}, {53, 166}, {49, 162}, {21, 134}, {25, 138}, {29, 142}, {19,
132}, {51, 164}, {27, 140}, {23, 136}, {55, 168}, {1, 168}, {32, 145}, {46,
159}, {44, 157}, {42, 155}, {40, 153}, {38, 151}, {36, 149}, {34, 147}, {33,
146}, {45, 158}, {41, 154}, {37, 150}, {35, 148}, {43, 156}, {39, 152}, {73,
128}, {111, 166}, {109, 164}, {75, 130}, {77, 132}, {79, 134}, {89, 144}, {91,
146}, {93, 148}, {95, 150}, {105, 160}, {107, 162}, {74, 129}, {110, 165}, {78,
133}, {90, 145}, {94, 149}, {106, 161}, {76, 131}, {92, 147}, {108, 163}, {80,
135}, {112, 167}, {88, 143}, {81, 136}, {113, 168}, {83, 138}, {85, 140}, {87,
142}, {82, 137}, {86, 141}, {84, 139}, {96, 151}, {104, 159}, {97, 152}, {99,
154}, {101, 156}, {103, 158}, {98, 153}, {102, 157}, {100, 155}, {127, 128}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 114)(3, 59)(5, 117)(6, 62)(8, 120)(9, 65)(11, 123)(12, 68)(14, 126)(15,
71)(17, 129)(18, 74)(20, 132)(21, 77)(23, 135)(24, 80)(26, 138)(27, 83)(29,
141)(30, 86)(32, 144)(33, 89)(35, 147)(36, 92)(38, 150)(39, 95)(41, 153)(42,
98)(44, 156)(45, 101)(47, 159)(48, 104)(50, 162)(51, 107)(53, 165)(54, 110)(56,
168)(57, 113)(60, 116)(63, 119)(66, 122)(69, 125)(72, 128)(75, 131)(78, 134)(81,
137)(84, 140)(87, 143)(90, 146)(93, 149)(96, 152)(99, 155)(102, 158)(105,
161)(108, 164)(111, 167) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168)
c: (2, 56)(3, 111)(4, 166)(5, 53)(6, 108)(7, 163)(8, 50)(9, 105)(10, 160)(11,
47)(12, 102)(13, 157)(14, 44)(15, 99)(16, 154)(17, 41)(18, 96)(19, 151)(20,
38)(21, 93)(22, 148)(23, 35)(24, 90)(25, 145)(26, 32)(27, 87)(28, 142)(30,
84)(31, 139)(33, 81)(34, 136)(36, 78)(37, 133)(39, 75)(40, 130)(42, 72)(43,
127)(45, 69)(46, 124)(48, 66)(49, 121)(51, 63)(52, 118)(54, 60)(55, 115)(58,
112)(59, 167)(61, 109)(62, 164)(64, 106)(65, 161)(67, 103)(68, 158)(70, 100)(71,
155)(73, 97)(74, 152)(76, 94)(77, 149)(79, 91)(80, 146)(82, 88)(83, 143)(86,
140)(89, 137)(92, 134)(95, 131)(98, 128)(101, 125)(104, 122)(107, 119)(110,
116)(114, 168)(117, 165)(120, 162)(123, 159)(126, 156)(129, 153)(132, 150)(135,
147)(138, 144)
C4[ 168, 6 ]
168
-1 56 2 168 114
-2 1 57 3 115
-3 2 58 4 116
-4 3 59 5 117
-5 4 60 6 118
-6 5 61 7 119
-7 6 62 8 120
-8 121 7 63 9
-9 122 8 64 10
-10 11 123 9 65
-11 66 12 124 10
-12 11 67 13 125
-13 12 68 14 126
-14 13 69 15 127
-15 14 70 16 128
-16 15 71 17 129
-17 16 72 18 130
-18 17 73 19 131
-19 132 18 74 20
-20 133 19 75 21
-21 22 134 20 76
-22 77 23 135 21
-23 22 78 24 136
-24 23 79 25 137
-25 24 80 26 138
-26 25 81 27 139
-27 26 82 28 140
-28 27 83 29 141
-29 28 84 30 142
-30 143 29 85 31
-31 144 30 86 32
-32 33 145 31 87
-33 88 34 146 32
-34 33 89 35 147
-35 34 90 36 148
-36 35 91 37 149
-37 36 92 38 150
-38 37 93 39 151
-39 38 94 40 152
-40 39 95 41 153
-41 154 40 96 42
-42 155 41 97 43
-43 44 156 42 98
-44 99 45 157 43
-45 44 100 46 158
-46 45 101 47 159
-47 46 102 48 160
-48 47 103 49 161
-49 48 104 50 162
-50 49 105 51 163
-51 50 106 52 164
-52 165 51 107 53
-53 166 52 108 54
-54 55 167 53 109
-55 110 56 168 54
-56 55 1 111 57
-57 56 2 112 58
-58 57 3 113 59
-59 58 4 114 60
-60 59 5 115 61
-61 60 6 116 62
-62 61 7 117 63
-63 62 8 118 64
-64 63 9 119 65
-65 66 64 10 120
-66 11 121 67 65
-67 66 12 122 68
-68 67 13 123 69
-69 68 14 124 70
-70 69 15 125 71
-71 70 16 126 72
-72 71 17 127 73
-73 72 18 128 74
-74 73 19 129 75
-75 74 20 130 76
-76 77 75 21 131
-77 22 132 78 76
-78 77 23 133 79
-79 78 24 134 80
-80 79 25 135 81
-81 80 26 136 82
-82 81 27 137 83
-83 82 28 138 84
-84 83 29 139 85
-85 84 30 140 86
-86 85 31 141 87
-87 88 86 32 142
-88 33 143 89 87
-89 88 34 144 90
-90 89 35 145 91
-91 90 36 146 92
-92 91 37 147 93
-93 92 38 148 94
-94 93 39 149 95
-95 94 40 150 96
-96 95 41 151 97
-97 96 42 152 98
-98 99 97 43 153
-99 44 154 100 98
-100 99 45 155 101
-101 100 46 156 102
-102 101 47 157 103
-103 102 48 158 104
-104 103 49 159 105
-105 104 50 160 106
-106 105 51 161 107
-107 106 52 162 108
-108 107 53 163 109
-109 110 108 54 164
-110 55 165 111 109
-111 110 56 166 112
-112 111 57 167 113
-113 112 58 168 114
-114 1 113 59 115
-115 2 114 60 116
-116 3 115 61 117
-117 4 116 62 118
-118 5 117 63 119
-119 6 118 64 120
-120 121 7 119 65
-121 66 122 8 120
-122 121 67 123 9
-123 122 68 124 10
-124 11 123 69 125
-125 12 124 70 126
-126 13 125 71 127
-127 14 126 72 128
-128 15 127 73 129
-129 16 128 74 130
-130 17 129 75 131
-131 132 18 130 76
-132 77 133 19 131
-133 132 78 134 20
-134 133 79 135 21
-135 22 134 80 136
-136 23 135 81 137
-137 24 136 82 138
-138 25 137 83 139
-139 26 138 84 140
-140 27 139 85 141
-141 28 140 86 142
-142 143 29 141 87
-143 88 144 30 142
-144 143 89 145 31
-145 144 90 146 32
-146 33 145 91 147
-147 34 146 92 148
-148 35 147 93 149
-149 36 148 94 150
-150 37 149 95 151
-151 38 150 96 152
-152 39 151 97 153
-153 154 40 152 98
-154 99 155 41 153
-155 154 100 156 42
-156 155 101 157 43
-157 44 156 102 158
-158 45 157 103 159
-159 46 158 104 160
-160 47 159 105 161
-161 48 160 106 162
-162 49 161 107 163
-163 50 162 108 164
-164 165 51 163 109
-165 110 166 52 164
-166 165 111 167 53
-167 166 112 168 54
-168 55 1 167 113
0