[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 168, 12 ]. See Glossary for some
detail.
PS( 12, 28; 3) = PS( 12, 28; 5) = PS( 12, 28; 9)
= PS( 12, 28; 11) = MSZ ( 12, 14, 5, 3) = UG(ATD[168, 7])
= UG(ATD[168, 8]) = MG(Cmap(168, 21) { 12, 12| 6}_ 28) = MG(Cmap(168, 22) {
12, 12| 6}_ 28)
= MG(Cmap(168, 23) { 12, 12| 6}_ 28) = MG(Cmap(168, 24) { 12, 12| 6}_ 28) =
HT[168, 4]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 11 | - | - | - | - | 0 | - | - | - | - | - | - | - | 0 |
| 2 | - | - | 0 | 0 | - | 0 | - | - | - | - | 0 | - | - | - |
| 3 | - | 0 | - | - | - | 9 | 11 | - | - | - | 11 | - | - | - |
| 4 | - | 0 | - | - | - | - | 1 | - | 11 | 11 | - | - | - | - |
| 5 | - | - | - | - | - | - | 2 | - | - | - | - | 0 10 | 0 | - |
| 6 | 0 | 0 | 3 | - | - | - | - | - | - | - | - | 1 | - | - |
| 7 | - | - | 1 | 11 | 10 | - | - | 11 | - | - | - | - | - | - |
| 8 | - | - | - | - | - | - | 1 | 1 11 | - | - | - | - | 3 | - |
| 9 | - | - | - | 1 | - | - | - | - | - | 11 | 9 | - | 1 | - |
| 10 | - | - | - | 1 | - | - | - | - | 1 | - | - | - | 11 | 11 |
| 11 | - | 0 | 1 | - | - | - | - | - | 3 | - | - | - | - | 3 |
| 12 | - | - | - | - | 0 2 | 11 | - | - | - | - | - | - | - | 3 |
| 13 | - | - | - | - | 0 | - | - | 9 | 11 | 1 | - | - | - | - |
| 14 | 0 | - | - | - | - | - | - | - | - | 1 | 9 | 9 | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 11 | 0 | - | - | - | 0 | - | - | - | - | - | - | - | - |
| 2 | 0 | - | - | - | - | - | - | - | - | 11 | - | 11 | 11 | - |
| 3 | - | - | - | - | 0 | - | - | - | 0 | 0 10 | - | - | - | - |
| 4 | - | - | - | - | 0 | 10 | 0 | - | - | - | - | - | - | 0 |
| 5 | - | - | 0 | 0 | - | - | - | - | 3 | - | - | - | - | 1 |
| 6 | 0 | - | - | 2 | - | - | - | - | 3 | - | - | - | - | 11 |
| 7 | - | - | - | 0 | - | - | - | - | - | - | 11 | 11 | 1 | - |
| 8 | - | - | - | - | - | - | - | 1 11 | 0 | - | - | - | 2 | - |
| 9 | - | - | 0 | - | 9 | 9 | - | 0 | - | - | - | - | - | - |
| 10 | - | 1 | 0 2 | - | - | - | - | - | - | - | - | 3 | - | - |
| 11 | - | - | - | - | - | - | 1 | - | - | - | - | 1 | 11 | 9 |
| 12 | - | 1 | - | - | - | - | 1 | - | - | 9 | 11 | - | - | - |
| 13 | - | 1 | - | - | - | - | 11 | 10 | - | - | 1 | - | - | - |
| 14 | - | - | - | 0 | 11 | 1 | - | - | - | - | 3 | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | |
|---|---|---|---|---|---|---|
| 1 | - | - | 0 | 0 | 0 | 0 |
| 2 | - | - | 0 | 24 | 8 | 16 |
| 3 | 0 | 0 | - | - | 1 | 25 |
| 4 | 0 | 4 | - | - | 9 | 21 |
| 5 | 0 | 20 | 27 | 19 | - | - |
| 6 | 0 | 12 | 3 | 7 | - | - |