C4graphGraph forms for C4 [ 174, 1 ] = W(87,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 174, 1 ] = W(87,2).

(I) Following is a form readable by MAGMA:

g:=Graph<174|{ {2, 3}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {1, 2}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {33, 34}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {3, 4}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {107, 108}, {99, 100}, {51, 52}, {43, 44}, {35, 36}, {11, 12}, {19, 20}, {27, 28}, {59, 60}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {7, 8}, {167, 168}, {151, 152}, {135, 136}, {119, 120}, {103, 104}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {15, 16}, {143, 144}, {111, 112}, {47, 48}, {79, 80}, {31, 32}, {159, 160}, {95, 96}, {1, 87}, {41, 127}, {40, 126}, {33, 119}, {32, 118}, {8, 94}, {9, 95}, {1, 89}, {39, 127}, {38, 126}, {37, 125}, {36, 124}, {35, 123}, {34, 122}, {33, 121}, {32, 120}, {2, 90}, {3, 91}, {4, 92}, {5, 93}, {6, 94}, {7, 95}, {2, 88}, {39, 125}, {38, 124}, {35, 121}, {34, 120}, {3, 89}, {6, 92}, {7, 93}, {4, 90}, {37, 123}, {36, 122}, {5, 91}, {8, 96}, {31, 119}, {9, 97}, {10, 98}, {11, 99}, {12, 100}, {13, 101}, {14, 102}, {15, 103}, {24, 112}, {25, 113}, {26, 114}, {27, 115}, {28, 116}, {29, 117}, {30, 118}, {10, 96}, {31, 117}, {11, 97}, {14, 100}, {15, 101}, {26, 112}, {27, 113}, {30, 116}, {12, 98}, {13, 99}, {28, 114}, {29, 115}, {16, 102}, {17, 103}, {24, 110}, {25, 111}, {16, 104}, {17, 105}, {18, 106}, {19, 107}, {20, 108}, {21, 109}, {22, 110}, {23, 111}, {18, 104}, {19, 105}, {22, 108}, {23, 109}, {20, 106}, {21, 107}, {63, 64}, {40, 128}, {47, 135}, {46, 134}, {45, 133}, {44, 132}, {43, 131}, {42, 130}, {41, 129}, {56, 144}, {57, 145}, {58, 146}, {59, 147}, {60, 148}, {61, 149}, {62, 150}, {63, 151}, {42, 128}, {47, 133}, {46, 132}, {43, 129}, {58, 144}, {59, 145}, {62, 148}, {63, 149}, {44, 130}, {45, 131}, {60, 146}, {61, 147}, {1, 174}, {48, 134}, {49, 135}, {56, 142}, {57, 143}, {48, 136}, {51, 139}, {50, 138}, {49, 137}, {52, 140}, {53, 141}, {54, 142}, {55, 143}, {50, 136}, {51, 137}, {54, 140}, {55, 141}, {52, 138}, {53, 139}, {64, 150}, {65, 151}, {72, 158}, {73, 159}, {64, 152}, {65, 153}, {66, 154}, {67, 155}, {68, 156}, {69, 157}, {70, 158}, {71, 159}, {66, 152}, {67, 153}, {70, 156}, {71, 157}, {68, 154}, {69, 155}, {72, 160}, {73, 161}, {74, 162}, {75, 163}, {76, 164}, {77, 165}, {78, 166}, {79, 167}, {74, 160}, {75, 161}, {78, 164}, {79, 165}, {76, 162}, {77, 163}, {80, 166}, {81, 167}, {88, 174}, {80, 168}, {81, 169}, {82, 170}, {83, 171}, {84, 172}, {85, 173}, {86, 174}, {82, 168}, {83, 169}, {86, 172}, {87, 173}, {84, 170}, {85, 171}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (82, 169)
b: (70, 157)
c: (36, 123)
d: (67, 154)
e: (12, 99)
f: (39, 126)
g: (63, 150)
h: (18, 105)
m: (5, 92)
n1: (19, 106)
a1: (52, 139)
b1: (61, 148)
c1: (31, 118)
d1: (79, 166)
e1: (28, 115)
f1: (87, 174)
g1: (6, 93)
h1: (64, 151)
m1: (25, 112)
n2: (68, 155)
a2: (57, 144)
b2: (55, 142)
c2: (2, 89)
d2: (85, 172)
e2: (3, 90)
f2: (7, 94)
g2: (58, 145)
h2: (65, 152)
m2: (86, 173)
n3: (72, 159)
a3: (35, 122)
b3: (15, 102)
c3: (34, 121)
d3: (33, 120)
e3: (38, 125)
f3: (20, 107)
g3: (49, 136)
h3: (80, 167)
m3: (21, 108)
n4: (78, 165)
a4: (76, 163)
b4: (73, 160)
c4: (66, 153)
d4: (69, 156)
e4: (45, 132)
f4: (51, 138)
g4: (32, 119)
h4: (47, 134)
m4: (8, 95)
n5: (46, 133)
a5: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87)(88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174)
b5: (2, 87)(3, 86)(4, 85)(5, 84)(6, 83)(7, 82)(8, 81)(9, 80)(10, 79)(11, 78)(12, 77)(13, 76)(14, 75)(15, 74)(16, 73)(17, 72)(18, 71)(19, 70)(20, 69)(21, 68)(22, 67)(23, 66)(24, 65)(25, 64)(26, 63)(27, 62)(28, 61)(29, 60)(30, 59)(31, 58)(32, 57)(33, 56)(34, 55)(35, 54)(36, 53)(37, 52)(38, 51)(39, 50)(40, 49)(41, 48)(42, 47)(43, 46)(44, 45)(89, 174)(90, 173)(91, 172)(92, 171)(93, 170)(94, 169)(95, 168)(96, 167)(97, 166)(98, 165)(99, 164)(100, 163)(101, 162)(102, 161)(103, 160)(104, 159)(105, 158)(106, 157)(107, 156)(108, 155)(109, 154)(110, 153)(111, 152)(112, 151)(113, 150)(114, 149)(115, 148)(116, 147)(117, 146)(118, 145)(119, 144)(120, 143)(121, 142)(122, 141)(123, 140)(124, 139)(125, 138)(126, 137)(127, 136)(128, 135)(129, 134)(130, 133)(131, 132)
c5: (11, 98)
d5: (13, 100)
e5: (75, 162)
f5: (83, 170)
g5: (14, 101)
h5: (24, 111)
m5: (40, 127)
n6: (29, 116)
a6: (74, 161)
b6: (48, 135)
c6: (23, 110)
d6: (50, 137)
e6: (71, 158)
f6: (56, 143)
g6: (37, 124)
h6: (4, 91)
m6: (17, 104)
n7: (22, 109)
a7: (27, 114)
b7: (9, 96)
c7: (26, 113)
d7: (62, 149)
e7: (53, 140)
f7: (16, 103)
g7: (30, 117)
h7: (81, 168)
m7: (77, 164)
n8: (10, 97)
a8: (42, 129)
b8: (44, 131)
c8: (60, 147)
d8: (54, 141)
e8: (59, 146)
f8: (84, 171)
g8: (41, 128)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 174, 1 ]
174
-1 89 2 174 87
-2 88 1 90 3
-3 89 2 91 4
-4 90 3 92 5
-5 91 4 93 6
-6 92 5 94 7
-7 93 6 95 8
-8 94 7 96 9
-9 95 8 97 10
-10 11 96 9 98
-11 99 12 97 10
-12 11 100 13 98
-13 99 12 101 14
-14 100 13 102 15
-15 101 14 103 16
-16 102 15 104 17
-17 103 16 105 18
-18 104 17 106 19
-19 105 18 107 20
-20 106 19 108 21
-21 22 107 20 109
-22 110 23 108 21
-23 22 111 24 109
-24 110 23 112 25
-25 111 24 113 26
-26 112 25 114 27
-27 113 26 115 28
-28 114 27 116 29
-29 115 28 117 30
-30 116 29 118 31
-31 117 30 119 32
-32 33 118 31 120
-33 121 34 119 32
-34 33 122 35 120
-35 121 34 123 36
-36 122 35 124 37
-37 123 36 125 38
-38 124 37 126 39
-39 125 38 127 40
-40 126 39 128 41
-41 127 40 129 42
-42 128 41 130 43
-43 44 129 42 131
-44 132 45 130 43
-45 44 133 46 131
-46 132 45 134 47
-47 133 46 135 48
-48 134 47 136 49
-49 135 48 137 50
-50 136 49 138 51
-51 137 50 139 52
-52 138 51 140 53
-53 139 52 141 54
-54 55 140 53 142
-55 143 56 141 54
-56 55 144 57 142
-57 143 56 145 58
-58 144 57 146 59
-59 145 58 147 60
-60 146 59 148 61
-61 147 60 149 62
-62 148 61 150 63
-63 149 62 151 64
-64 150 63 152 65
-65 66 151 64 153
-66 154 67 152 65
-67 66 155 68 153
-68 154 67 156 69
-69 155 68 157 70
-70 156 69 158 71
-71 157 70 159 72
-72 158 71 160 73
-73 159 72 161 74
-74 160 73 162 75
-75 161 74 163 76
-76 77 162 75 164
-77 165 78 163 76
-78 77 166 79 164
-79 165 78 167 80
-80 166 79 168 81
-81 167 80 169 82
-82 168 81 170 83
-83 169 82 171 84
-84 170 83 172 85
-85 171 84 173 86
-86 172 85 174 87
-87 88 1 173 86
-88 89 2 174 87
-89 88 1 90 3
-90 89 2 91 4
-91 90 3 92 5
-92 91 4 93 6
-93 92 5 94 7
-94 93 6 95 8
-95 94 7 96 9
-96 95 8 97 10
-97 11 96 9 98
-98 99 12 97 10
-99 11 100 13 98
-100 99 12 101 14
-101 100 13 102 15
-102 101 14 103 16
-103 102 15 104 17
-104 103 16 105 18
-105 104 17 106 19
-106 105 18 107 20
-107 106 19 108 21
-108 22 107 20 109
-109 110 23 108 21
-110 22 111 24 109
-111 110 23 112 25
-112 111 24 113 26
-113 112 25 114 27
-114 113 26 115 28
-115 114 27 116 29
-116 115 28 117 30
-117 116 29 118 31
-118 117 30 119 32
-119 33 118 31 120
-120 121 34 119 32
-121 33 122 35 120
-122 121 34 123 36
-123 122 35 124 37
-124 123 36 125 38
-125 124 37 126 39
-126 125 38 127 40
-127 126 39 128 41
-128 127 40 129 42
-129 128 41 130 43
-130 44 129 42 131
-131 132 45 130 43
-132 44 133 46 131
-133 132 45 134 47
-134 133 46 135 48
-135 134 47 136 49
-136 135 48 137 50
-137 136 49 138 51
-138 137 50 139 52
-139 138 51 140 53
-140 139 52 141 54
-141 55 140 53 142
-142 143 56 141 54
-143 55 144 57 142
-144 143 56 145 58
-145 144 57 146 59
-146 145 58 147 60
-147 146 59 148 61
-148 147 60 149 62
-149 148 61 150 63
-150 149 62 151 64
-151 150 63 152 65
-152 66 151 64 153
-153 154 67 152 65
-154 66 155 68 153
-155 154 67 156 69
-156 155 68 157 70
-157 156 69 158 71
-158 157 70 159 72
-159 158 71 160 73
-160 159 72 161 74
-161 160 73 162 75
-162 161 74 163 76
-163 77 162 75 164
-164 165 78 163 76
-165 77 166 79 164
-166 165 78 167 80
-167 166 79 168 81
-168 167 80 169 82
-169 168 81 170 83
-170 169 82 171 84
-171 170 83 172 85
-172 171 84 173 86
-173 172 85 174 87
-174 88 1 173 86
0

**************