C4graphGraph forms for C4 [ 176, 11 ] = SDD(R_22(13,12))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 176, 11 ] = SDD(R_22(13,12)).

(I) Following is a form readable by MAGMA:

g:=Graph<176|{ {88, 122}, {84, 119}, {82, 118}, {83, 119}, {80, 117}, {81, 118}, {68, 111}, {66, 110}, {67, 111}, {64, 109}, {85, 120}, {86, 120}, {87, 121}, {65, 110}, {79, 127}, {76, 127}, {77, 126}, {74, 126}, {69, 112}, {73, 124}, {72, 125}, {65, 119}, {75, 125}, {71, 113}, {70, 112}, {74, 114}, {75, 115}, {72, 113}, {77, 116}, {67, 121}, {79, 117}, {78, 116}, {70, 124}, {73, 114}, {71, 123}, {68, 123}, {76, 115}, {69, 122}, {36, 100}, {38, 102}, {34, 99}, {37, 100}, {48, 113}, {51, 114}, {33, 99}, {39, 101}, {32, 99}, {38, 101}, {32, 100}, {44, 104}, {42, 111}, {54, 115}, {35, 101}, {47, 105}, {35, 100}, {47, 104}, {22, 95}, {63, 118}, {60, 117}, {46, 103}, {21, 95}, {45, 103}, {20, 95}, {44, 103}, {52, 127}, {18, 94}, {42, 102}, {16, 93}, {43, 102}, {40, 101}, {19, 94}, {57, 116}, {17, 95}, {41, 103}, {17, 94}, {41, 102}, {49, 126}, {12, 92}, {62, 110}, {60, 108}, {14, 94}, {10, 91}, {61, 108}, {13, 92}, {58, 107}, {9, 91}, {63, 109}, {15, 93}, {57, 107}, {8, 91}, {62, 109}, {14, 93}, {46, 125}, {56, 107}, {8, 92}, {56, 108}, {11, 93}, {59, 109}, {11, 92}, {43, 124}, {59, 108}, {1, 89}, {33, 121}, {48, 104}, {50, 106}, {49, 104}, {3, 89}, {51, 105}, {1, 90}, {2, 89}, {50, 105}, {6, 90}, {39, 123}, {54, 106}, {4, 89}, {7, 90}, {45, 112}, {52, 105}, {55, 106}, {5, 91}, {36, 122}, {53, 107}, {5, 90}, {53, 106}, {21, 117}, {18, 116}, {30, 120}, {25, 127}, {22, 126}, {2, 110}, {27, 119}, {16, 124}, {3, 111}, {19, 125}, {24, 118}, {10, 122}, {20, 96}, {6, 112}, {23, 97}, {13, 123}, {23, 96}, {9, 113}, {26, 98}, {24, 96}, {25, 96}, {27, 97}, {26, 97}, {4, 120}, {30, 98}, {15, 115}, {28, 97}, {31, 98}, {7, 121}, {29, 99}, {12, 114}, {29, 98}, {6, 134}, {39, 167}, {8, 136}, {4, 133}, {7, 134}, {5, 135}, {36, 166}, {11, 137}, {5, 134}, {11, 136}, {43, 168}, {1, 133}, {33, 165}, {14, 138}, {12, 136}, {13, 136}, {3, 133}, {15, 137}, {1, 134}, {14, 137}, {2, 133}, {46, 169}, {37, 175}, {34, 174}, {10, 135}, {9, 135}, {8, 135}, {15, 159}, {30, 142}, {28, 141}, {31, 142}, {12, 158}, {29, 143}, {29, 142}, {61, 174}, {9, 157}, {26, 142}, {24, 140}, {25, 140}, {27, 141}, {26, 141}, {58, 173}, {2, 154}, {40, 176}, {20, 140}, {18, 138}, {3, 155}, {16, 137}, {19, 138}, {57, 160}, {6, 156}, {23, 141}, {17, 139}, {17, 138}, {23, 140}, {49, 170}, {55, 172}, {28, 128}, {22, 139}, {63, 162}, {60, 161}, {21, 139}, {31, 129}, {20, 139}, {52, 171}, {4, 164}, {34, 130}, {54, 150}, {56, 152}, {52, 149}, {55, 150}, {7, 165}, {53, 151}, {59, 153}, {53, 150}, {59, 152}, {48, 148}, {62, 154}, {60, 152}, {50, 150}, {49, 148}, {61, 152}, {37, 131}, {63, 153}, {51, 149}, {50, 149}, {62, 153}, {54, 159}, {13, 167}, {10, 166}, {40, 132}, {34, 143}, {48, 157}, {51, 158}, {58, 151}, {33, 143}, {57, 151}, {32, 143}, {56, 151}, {28, 172}, {32, 144}, {42, 155}, {45, 156}, {18, 160}, {35, 145}, {31, 173}, {25, 171}, {35, 144}, {21, 161}, {38, 146}, {36, 144}, {37, 144}, {39, 145}, {38, 145}, {55, 128}, {16, 168}, {42, 146}, {27, 163}, {44, 148}, {40, 145}, {43, 146}, {19, 169}, {41, 147}, {30, 164}, {24, 162}, {47, 149}, {41, 146}, {47, 148}, {58, 129}, {22, 170}, {46, 147}, {45, 147}, {44, 147}, {61, 130}, {64, 131}, {66, 132}, {78, 128}, {82, 130}, {80, 129}, {81, 128}, {83, 129}, {86, 132}, {76, 159}, {74, 158}, {87, 131}, {75, 159}, {72, 157}, {73, 158}, {85, 130}, {84, 131}, {66, 154}, {67, 155}, {64, 153}, {69, 156}, {70, 156}, {71, 157}, {65, 154}, {88, 132}, {68, 155}, {71, 167}, {74, 170}, {72, 169}, {73, 168}, {65, 163}, {78, 172}, {75, 169}, {68, 167}, {69, 166}, {79, 171}, {67, 165}, {86, 176}, {76, 171}, {77, 170}, {88, 176}, {77, 160}, {70, 168}, {79, 161}, {78, 160}, {64, 175}, {82, 162}, {83, 163}, {80, 161}, {85, 164}, {66, 176}, {87, 165}, {86, 164}, {81, 162}, {84, 163}, {87, 175}, {84, 175}, {85, 174}, {82, 174}, {80, 173}, {81, 172}, {83, 173}, {88, 166} }>;

(II) A more general form is to represent the graph as the orbit of {88, 122} under the group generated by the following permutations:

a: (113, 157)
b: (114, 158)
c: (107, 151)
d: (106, 150)
e: (116, 160)
f: (128, 172)
g: (111, 155)
h: (110, 154)
m: (108, 152)
n1: (14, 15)(17, 54)(18, 76)(19, 75)(20, 55)(21, 53)(22, 50)(23, 28)(24, 81)(25, 78)(47, 49)(51, 74)(52, 77)(56, 60)(57, 79)(58, 80)(94, 115)(95, 106)(96, 128)(105, 126)(107, 117)(116, 127)(138, 159)(139, 150)(140, 172)(149, 170)(151, 161)(160, 171)
a1: (105, 149)
b1: (112, 156)
c1: (124, 168)
d1: (89, 133)
e1: (8, 9)(11, 48)(12, 72)(13, 71)(14, 49)(15, 47)(16, 44)(17, 22)(18, 77)(19, 74)(41, 43)(45, 70)(46, 73)(50, 54)(51, 75)(52, 76)(92, 113)(93, 104)(94, 126)(103, 124)(105, 115)(114, 125)(136, 157)(137, 148)(138, 170)(147, 168)(149, 159)(158, 169)
f1: (1, 2, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8, 5)(3, 66, 64, 61, 58, 55, 52, 49, 46, 43, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6)(4, 65, 63, 60, 57, 54, 51, 48, 45, 42, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7)(67, 86, 84, 82, 80, 78, 76, 74, 72, 70, 68, 88, 87, 85, 83, 81, 79, 77, 75, 73, 71, 69)(89, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90)(111, 132, 131, 130, 129, 128, 127, 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114, 113, 112)(133, 154, 153, 152, 151, 150, 149, 148, 147, 146, 145, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134)(155, 176, 175, 174, 173, 172, 171, 170, 169, 168, 167, 166, 165, 164, 163, 162, 161, 160, 159, 158, 157, 156)
g1: (117, 161)
h1: (104, 148)
m1: (130, 174)
n2: (109, 153)
a2: (101, 145)
b2: (118, 162)
c2: (123, 167)
d2: (92, 136)
e2: (91, 135)
f2: (122, 166)
g2: (2, 5)(3, 7)(4, 6)(8, 65)(9, 62)(10, 66)(11, 27)(12, 83)(13, 84)(14, 23)(15, 28)(16, 26)(17, 20)(18, 25)(19, 24)(21, 22)(29, 43)(30, 70)(31, 73)(32, 38)(33, 42)(34, 41)(36, 40)(37, 39)(44, 61)(45, 85)(46, 82)(47, 56)(48, 59)(49, 60)(50, 53)(51, 58)(52, 57)(54, 55)(63, 72)(64, 71)(68, 87)(69, 86)(74, 80)(75, 81)(76, 78)(77, 79)(89, 90)(91, 110)(92, 119)(93, 97)(94, 96)(98, 124)(99, 102)(100, 101)(103, 130)(104, 108)(105, 107)(109, 113)(111, 121)(112, 120)(114, 129)(115, 128)(116, 127)(117, 126)(118, 125)(122, 132)(123, 131)(133, 134)(135, 154)(136, 163)(137, 141)(138, 140)(142, 168)(143, 146)(144, 145)(147, 174)(148, 152)(149, 151)(153, 157)(155, 165)(156, 164)(158, 173)(159, 172)(160, 171)(161, 170)(162, 169)(166, 176)(167, 175)
h2: (20, 21)(23, 60)(24, 80)(25, 79)(26, 61)(27, 59)(28, 56)(29, 34)(30, 85)(31, 82)(53, 55)(57, 78)(58, 81)(62, 65)(63, 83)(64, 84)(96, 117)(97, 108)(98, 130)(107, 128)(109, 119)(118, 129)(140, 161)(141, 152)(142, 174)(151, 172)(153, 163)(162, 173)
m2: (96, 140)
n3: (127, 171)
a3: (11, 12)(14, 74)(15, 51)(16, 73)(17, 22)(18, 77)(19, 49)(44, 46)(47, 75)(48, 72)(50, 54)(52, 76)(93, 114)(94, 126)(104, 125)(105, 115)(137, 158)(138, 170)(148, 169)(149, 159)
b3: (115, 159)
c3: (121, 165)
d3: (90, 134)
e3: (23, 24)(26, 82)(27, 63)(28, 81)(29, 34)(30, 85)(31, 61)(56, 58)(59, 83)(60, 80)(62, 65)(64, 84)(97, 118)(98, 130)(108, 129)(109, 119)(141, 162)(142, 174)(152, 173)(153, 163)
f3: (129, 173)
g3: (17, 18)(20, 78)(21, 57)(22, 77)(23, 28)(24, 81)(25, 55)(50, 52)(53, 79)(54, 76)(56, 60)(58, 80)(95, 116)(96, 128)(106, 127)(107, 117)(139, 160)(140, 172)(150, 171)(151, 161)
h3: (120, 164)
m3: (119, 163)
n4: (98, 142)
a4: (5, 6)(8, 70)(9, 45)(10, 69)(11, 16)(12, 73)(13, 43)(38, 39)(41, 71)(42, 68)(44, 48)(46, 72)(91, 112)(92, 124)(102, 123)(103, 113)(135, 156)(136, 168)(146, 167)(147, 157)
b4: (103, 147)
c4: (126, 170)
d4: (125, 169)
e4: (94, 138)
f4: (100, 144)
g4: (132, 176)
h4: (131, 175)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 176, 11 ]
176
-1 89 133 90 134
-2 110 154 89 133
-3 155 89 111 133
-4 89 133 120 164
-5 90 134 91 135
-6 156 90 112 134
-7 121 165 90 134
-8 91 135 92 136
-9 157 91 113 135
-10 122 166 91 135
-11 92 136 93 137
-12 136 158 92 114
-13 123 167 92 136
-14 93 137 94 138
-15 137 159 93 115
-16 124 168 93 137
-17 94 138 95 139
-18 138 160 94 116
-19 125 169 94 138
-20 95 139 96 140
-21 139 161 95 117
-22 126 170 95 139
-23 96 140 97 141
-24 140 162 96 118
-25 127 171 96 140
-26 97 141 98 142
-27 119 141 163 97
-28 128 172 97 141
-29 99 143 98 142
-30 120 142 164 98
-31 129 173 98 142
-32 99 143 100 144
-33 121 143 165 99
-34 99 143 130 174
-35 100 144 101 145
-36 122 144 166 100
-37 100 144 131 175
-38 101 145 102 146
-39 123 145 167 101
-40 132 176 101 145
-41 102 146 103 147
-42 111 155 102 146
-43 102 124 146 168
-44 103 147 104 148
-45 112 156 103 147
-46 103 125 147 169
-47 104 148 105 149
-48 113 157 104 148
-49 170 104 126 148
-50 105 149 106 150
-51 114 158 105 149
-52 171 105 127 149
-53 106 150 107 151
-54 115 159 106 150
-55 172 106 128 150
-56 107 151 108 152
-57 116 160 107 151
-58 173 107 129 151
-59 108 152 109 153
-60 117 161 108 152
-61 174 108 130 152
-62 110 154 109 153
-63 118 162 109 153
-64 153 175 109 131
-65 110 154 119 163
-66 154 176 110 132
-67 121 165 111 155
-68 111 155 123 167
-69 122 166 112 156
-70 112 156 124 168
-71 123 167 113 157
-72 113 157 125 169
-73 124 168 114 158
-74 114 158 126 170
-75 125 169 115 159
-76 115 159 127 171
-77 126 170 116 160
-78 116 160 128 172
-79 127 171 117 161
-80 117 161 129 173
-81 128 172 118 162
-82 118 162 130 174
-83 129 173 119 163
-84 119 163 131 175
-85 130 174 120 164
-86 132 176 120 164
-87 121 165 131 175
-88 132 176 122 166
-89 1 2 3 4
-90 1 5 6 7
-91 5 8 9 10
-92 11 12 13 8
-93 11 14 15 16
-94 14 17 18 19
-95 22 17 20 21
-96 23 24 25 20
-97 23 26 27 28
-98 26 29 30 31
-99 33 34 29 32
-100 35 36 37 32
-101 35 38 39 40
-102 38 41 42 43
-103 44 45 46 41
-104 44 47 48 49
-105 47 50 51 52
-106 55 50 53 54
-107 56 57 58 53
-108 56 59 60 61
-109 59 62 63 64
-110 66 2 62 65
-111 67 68 3 42
-112 45 69 70 6
-113 48 71 72 9
-114 12 51 73 74
-115 15 75 54 76
-116 77 78 57 18
-117 79 80 60 21
-118 24 81 82 63
-119 27 83 84 65
-120 4 30 85 86
-121 33 67 7 87
-122 88 36 69 10
-123 13 68 71 39
-124 70 16 73 43
-125 46 72 19 75
-126 22 77 49 74
-127 79 25 52 76
-128 55 78 81 28
-129 58 80 83 31
-130 34 82 61 85
-131 37 84 64 87
-132 66 88 40 86
-133 1 2 3 4
-134 1 5 6 7
-135 5 8 9 10
-136 11 12 13 8
-137 11 14 15 16
-138 14 17 18 19
-139 22 17 20 21
-140 23 24 25 20
-141 23 26 27 28
-142 26 29 30 31
-143 33 34 29 32
-144 35 36 37 32
-145 35 38 39 40
-146 38 41 42 43
-147 44 45 46 41
-148 44 47 48 49
-149 47 50 51 52
-150 55 50 53 54
-151 56 57 58 53
-152 56 59 60 61
-153 59 62 63 64
-154 66 2 62 65
-155 67 68 3 42
-156 45 69 70 6
-157 48 71 72 9
-158 12 51 73 74
-159 15 75 54 76
-160 77 78 57 18
-161 79 80 60 21
-162 24 81 82 63
-163 27 83 84 65
-164 4 30 85 86
-165 33 67 7 87
-166 88 36 69 10
-167 13 68 71 39
-168 70 16 73 43
-169 46 72 19 75
-170 22 77 49 74
-171 79 25 52 76
-172 55 78 81 28
-173 58 80 83 31
-174 34 82 61 85
-175 37 84 64 87
-176 66 88 40 86
0

**************