[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 178, 2 ] =
C_178(1,55).
(I) Following is a form readable by MAGMA:
g:=Graph<178|{ {2, 3}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168,
169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157},
{154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142,
143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131},
{128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116,
117}, {114, 115}, {112, 113}, {110, 111}, {54, 55}, {52, 53}, {50, 51}, {48,
49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {38, 39}, {4, 5}, {6, 7}, {8, 9},
{10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25},
{26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {56, 57}, {58, 59},
{60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {70, 71}, {72, 73}, {74, 75},
{76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91},
{92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105},
{106, 107}, {108, 109}, {1, 2}, {177, 178}, {173, 174}, {169, 170}, {165, 166},
{161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137,
138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114},
{53, 54}, {49, 50}, {45, 46}, {41, 42}, {37, 38}, {5, 6}, {9, 10}, {13, 14},
{17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {57, 58}, {61, 62}, {65, 66},
{69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98},
{101, 102}, {105, 106}, {109, 110}, {3, 4}, {171, 172}, {163, 164}, {155, 156},
{147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {51, 52}, {43, 44},
{11, 12}, {19, 20}, {27, 28}, {35, 36}, {59, 60}, {67, 68}, {75, 76}, {83, 84},
{91, 92}, {99, 100}, {107, 108}, {7, 8}, {167, 168}, {151, 152}, {135, 136},
{119, 120}, {39, 40}, {23, 24}, {55, 56}, {71, 72}, {87, 88}, {103, 104}, {15,
16}, {175, 176}, {143, 144}, {111, 112}, {47, 48}, {79, 80}, {8, 63}, {64, 119},
{72, 127}, {1, 56}, {3, 58}, {5, 60}, {7, 62}, {65, 120}, {67, 122}, {69, 124},
{71, 126}, {2, 57}, {6, 61}, {66, 121}, {70, 125}, {4, 59}, {159, 160}, {31,
32}, {68, 123}, {95, 96}, {9, 64}, {47, 102}, {45, 100}, {43, 98}, {41, 96},
{11, 66}, {13, 68}, {15, 70}, {25, 80}, {27, 82}, {29, 84}, {31, 86}, {57, 112},
{59, 114}, {61, 116}, {63, 118}, {10, 65}, {46, 101}, {42, 97}, {14, 69}, {26,
81}, {30, 85}, {58, 113}, {62, 117}, {12, 67}, {44, 99}, {28, 83}, {60, 115},
{16, 71}, {48, 103}, {24, 79}, {56, 111}, {17, 72}, {53, 108}, {51, 106}, {49,
104}, {19, 74}, {21, 76}, {23, 78}, {55, 110}, {18, 73}, {54, 109}, {50, 105},
{22, 77}, {20, 75}, {52, 107}, {32, 87}, {40, 95}, {33, 88}, {39, 94}, {37, 92},
{35, 90}, {4, 127}, {38, 93}, {34, 89}, {1, 124}, {3, 126}, {2, 125}, {36, 91},
{63, 64}, {5, 128}, {53, 176}, {47, 170}, {45, 168}, {39, 162}, {37, 160}, {7,
130}, {13, 136}, {15, 138}, {21, 144}, {23, 146}, {29, 152}, {31, 154}, {55,
178}, {6, 129}, {54, 177}, {46, 169}, {38, 161}, {14, 137}, {22, 145}, {30,
153}, {8, 131}, {44, 167}, {40, 163}, {12, 135}, {24, 147}, {28, 151}, {9, 132},
{43, 166}, {41, 164}, {11, 134}, {25, 148}, {27, 150}, {10, 133}, {42, 165},
{26, 149}, {16, 139}, {52, 175}, {48, 171}, {20, 143}, {17, 140}, {51, 174},
{49, 172}, {19, 142}, {18, 141}, {50, 173}, {1, 178}, {32, 155}, {36, 159}, {33,
156}, {35, 158}, {34, 157}, {73, 128}, {123, 178}, {121, 176}, {111, 166}, {75,
130}, {77, 132}, {79, 134}, {89, 144}, {91, 146}, {93, 148}, {95, 150}, {105,
160}, {107, 162}, {109, 164}, {74, 129}, {122, 177}, {110, 165}, {78, 133}, {90,
145}, {94, 149}, {106, 161}, {76, 131}, {92, 147}, {108, 163}, {80, 135}, {120,
175}, {112, 167}, {88, 143}, {81, 136}, {119, 174}, {117, 172}, {115, 170},
{113, 168}, {83, 138}, {85, 140}, {87, 142}, {82, 137}, {118, 173}, {114, 169},
{86, 141}, {84, 139}, {116, 171}, {96, 151}, {104, 159}, {97, 152}, {99, 154},
{101, 156}, {103, 158}, {98, 153}, {102, 157}, {100, 155}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 56, 178, 124)(3, 111, 177, 69)(4, 166, 176, 14)(5, 43, 175, 137)(6, 98,
174, 82)(7, 153, 173, 27)(8, 30, 172, 150)(9, 85, 171, 95)(10, 140, 170, 40)(11,
17, 169, 163)(12, 72, 168, 108)(13, 127, 167, 53)(15, 59, 165, 121)(16, 114,
164, 66)(18, 46, 162, 134)(19, 101, 161, 79)(20, 156, 160, 24)(21, 33, 159,
147)(22, 88, 158, 92)(23, 143, 157, 37)(25, 75, 155, 105)(26, 130, 154, 50)(28,
62, 152, 118)(29, 117, 151, 63)(31, 49, 149, 131)(32, 104, 148, 76)(34, 36, 146,
144)(35, 91, 145, 89)(38, 78, 142, 102)(39, 133, 141, 47)(41, 65, 139, 115)(42,
120, 138, 60)(44, 52, 136, 128)(45, 107, 135, 73)(48, 94, 132, 86)(51, 81, 129,
99)(54, 68, 126, 112)(55, 123, 125, 57)(58, 110, 122, 70)(61, 97, 119, 83)(64,
84, 116, 96)(67, 71, 113, 109)(74, 100, 106, 80)(77, 87, 103, 93) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178)
C4[ 178, 2 ]
178
-1 56 2 178 124
-2 1 57 3 125
-3 2 58 4 126
-4 3 59 5 127
-5 4 60 6 128
-6 5 61 7 129
-7 6 62 8 130
-8 7 63 9 131
-9 132 8 64 10
-10 11 133 9 65
-11 66 12 134 10
-12 11 67 13 135
-13 12 68 14 136
-14 13 69 15 137
-15 14 70 16 138
-16 15 71 17 139
-17 16 72 18 140
-18 17 73 19 141
-19 18 74 20 142
-20 143 19 75 21
-21 22 144 20 76
-22 77 23 145 21
-23 22 78 24 146
-24 23 79 25 147
-25 24 80 26 148
-26 25 81 27 149
-27 26 82 28 150
-28 27 83 29 151
-29 28 84 30 152
-30 29 85 31 153
-31 154 30 86 32
-32 33 155 31 87
-33 88 34 156 32
-34 33 89 35 157
-35 34 90 36 158
-36 35 91 37 159
-37 36 92 38 160
-38 37 93 39 161
-39 38 94 40 162
-40 39 95 41 163
-41 40 96 42 164
-42 165 41 97 43
-43 44 166 42 98
-44 99 45 167 43
-45 44 100 46 168
-46 45 101 47 169
-47 46 102 48 170
-48 47 103 49 171
-49 48 104 50 172
-50 49 105 51 173
-51 50 106 52 174
-52 51 107 53 175
-53 176 52 108 54
-54 55 177 53 109
-55 110 56 178 54
-56 55 1 111 57
-57 56 2 112 58
-58 57 3 113 59
-59 58 4 114 60
-60 59 5 115 61
-61 60 6 116 62
-62 61 7 117 63
-63 62 8 118 64
-64 63 9 119 65
-65 66 64 10 120
-66 11 121 67 65
-67 66 12 122 68
-68 67 13 123 69
-69 68 14 124 70
-70 69 15 125 71
-71 70 16 126 72
-72 71 17 127 73
-73 72 18 128 74
-74 73 19 129 75
-75 74 20 130 76
-76 77 75 21 131
-77 22 132 78 76
-78 77 23 133 79
-79 78 24 134 80
-80 79 25 135 81
-81 80 26 136 82
-82 81 27 137 83
-83 82 28 138 84
-84 83 29 139 85
-85 84 30 140 86
-86 85 31 141 87
-87 88 86 32 142
-88 33 143 89 87
-89 88 34 144 90
-90 89 35 145 91
-91 90 36 146 92
-92 91 37 147 93
-93 92 38 148 94
-94 93 39 149 95
-95 94 40 150 96
-96 95 41 151 97
-97 96 42 152 98
-98 99 97 43 153
-99 44 154 100 98
-100 99 45 155 101
-101 100 46 156 102
-102 101 47 157 103
-103 102 48 158 104
-104 103 49 159 105
-105 104 50 160 106
-106 105 51 161 107
-107 106 52 162 108
-108 107 53 163 109
-109 110 108 54 164
-110 55 165 111 109
-111 110 56 166 112
-112 111 57 167 113
-113 112 58 168 114
-114 113 59 169 115
-115 114 60 170 116
-116 115 61 171 117
-117 116 62 172 118
-118 117 63 173 119
-119 118 64 174 120
-120 121 119 65 175
-121 66 176 122 120
-122 121 67 177 123
-123 122 68 178 124
-124 1 123 69 125
-125 2 124 70 126
-126 3 125 71 127
-127 4 126 72 128
-128 5 127 73 129
-129 6 128 74 130
-130 7 129 75 131
-131 132 8 130 76
-132 77 133 9 131
-133 132 78 134 10
-134 11 133 79 135
-135 12 134 80 136
-136 13 135 81 137
-137 14 136 82 138
-138 15 137 83 139
-139 16 138 84 140
-140 17 139 85 141
-141 18 140 86 142
-142 143 19 141 87
-143 88 144 20 142
-144 143 89 145 21
-145 22 144 90 146
-146 23 145 91 147
-147 24 146 92 148
-148 25 147 93 149
-149 26 148 94 150
-150 27 149 95 151
-151 28 150 96 152
-152 29 151 97 153
-153 154 30 152 98
-154 99 155 31 153
-155 154 100 156 32
-156 33 155 101 157
-157 34 156 102 158
-158 35 157 103 159
-159 36 158 104 160
-160 37 159 105 161
-161 38 160 106 162
-162 39 161 107 163
-163 40 162 108 164
-164 165 41 163 109
-165 110 166 42 164
-166 165 111 167 43
-167 44 166 112 168
-168 45 167 113 169
-169 46 168 114 170
-170 47 169 115 171
-171 48 170 116 172
-172 49 171 117 173
-173 50 172 118 174
-174 51 173 119 175
-175 176 52 174 120
-176 121 177 53 175
-177 176 122 178 54
-178 55 1 177 123
0