[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 180, 2 ] =
C_180(1,19).
(I) Following is a form readable by MAGMA:
g:=Graph<180|{ {2, 3}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170,
171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159},
{156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144,
145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133},
{130, 131}, {128, 129}, {126, 127}, {124, 125}, {70, 71}, {68, 69}, {66, 67},
{64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51},
{48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {4, 5}, {6, 7}, {8, 9}, {10,
11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26,
27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {72, 73}, {74,
75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90,
91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105},
{106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118,
119}, {120, 121}, {122, 123}, {1, 2}, {177, 178}, {173, 174}, {169, 170}, {165,
166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142},
{137, 138}, {133, 134}, {129, 130}, {125, 126}, {69, 70}, {65, 66}, {61, 62},
{57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14},
{17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {73, 74}, {77, 78},
{81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109,
110}, {113, 114}, {117, 118}, {121, 122}, {3, 4}, {179, 180}, {171, 172}, {163,
164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {67, 68}, {59, 60}, {51,
52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91,
92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7, 8}, {167, 168}, {151,
152}, {135, 136}, {55, 56}, {39, 40}, {23, 24}, {71, 72}, {87, 88}, {103, 104},
{119, 120}, {4, 23}, {160, 179}, {140, 159}, {136, 155}, {132, 151}, {128, 147},
{68, 87}, {64, 83}, {44, 63}, {40, 59}, {8, 27}, {12, 31}, {32, 51}, {36, 55},
{72, 91}, {76, 95}, {96, 115}, {100, 119}, {104, 123}, {108, 127}, {1, 20},
{161, 180}, {139, 158}, {137, 156}, {131, 150}, {129, 148}, {67, 86}, {65, 84},
{43, 62}, {41, 60}, {3, 22}, {9, 28}, {11, 30}, {33, 52}, {35, 54}, {73, 92},
{75, 94}, {97, 116}, {99, 118}, {105, 124}, {107, 126}, {2, 21}, {138, 157},
{130, 149}, {66, 85}, {42, 61}, {10, 29}, {34, 53}, {74, 93}, {98, 117}, {106,
125}, {5, 24}, {135, 154}, {133, 152}, {69, 88}, {39, 58}, {7, 26}, {37, 56},
{71, 90}, {101, 120}, {103, 122}, {6, 25}, {175, 176}, {143, 144}, {134, 153},
{47, 48}, {15, 16}, {38, 57}, {70, 89}, {79, 80}, {102, 121}, {111, 112}, {13,
32}, {159, 178}, {157, 176}, {143, 162}, {141, 160}, {15, 34}, {29, 48}, {31,
50}, {77, 96}, {79, 98}, {93, 112}, {95, 114}, {14, 33}, {158, 177}, {142, 161},
{30, 49}, {78, 97}, {94, 113}, {16, 35}, {156, 175}, {152, 171}, {148, 167},
{144, 163}, {20, 39}, {24, 43}, {28, 47}, {80, 99}, {84, 103}, {88, 107}, {92,
111}, {17, 36}, {155, 174}, {153, 172}, {147, 166}, {145, 164}, {19, 38}, {25,
44}, {27, 46}, {81, 100}, {83, 102}, {89, 108}, {91, 110}, {18, 37}, {154, 173},
{146, 165}, {26, 45}, {82, 101}, {90, 109}, {21, 40}, {151, 170}, {149, 168},
{23, 42}, {85, 104}, {87, 106}, {22, 41}, {159, 160}, {150, 169}, {31, 32}, {86,
105}, {95, 96}, {45, 64}, {63, 82}, {61, 80}, {47, 66}, {46, 65}, {62, 81}, {48,
67}, {60, 79}, {56, 75}, {52, 71}, {49, 68}, {59, 78}, {57, 76}, {51, 70}, {50,
69}, {58, 77}, {53, 72}, {55, 74}, {54, 73}, {63, 64}, {2, 163}, {4, 165}, {6,
167}, {8, 169}, {10, 171}, {12, 173}, {14, 175}, {16, 177}, {18, 179}, {1, 162},
{5, 166}, {9, 170}, {13, 174}, {17, 178}, {3, 164}, {11, 172}, {19, 180}, {7,
168}, {1, 180}, {15, 176}, {109, 128}, {127, 146}, {125, 144}, {111, 130}, {110,
129}, {126, 145}, {112, 131}, {124, 143}, {116, 135}, {120, 139}, {113, 132},
{115, 134}, {121, 140}, {123, 142}, {114, 133}, {122, 141}, {117, 136}, {119,
138}, {118, 137}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 20)(3, 39)(4, 58)(5, 77)(6, 96)(7, 115)(8, 134)(9, 153)(10, 172)(12,
30)(13, 49)(14, 68)(15, 87)(16, 106)(17, 125)(18, 144)(19, 163)(22, 40)(23,
59)(24, 78)(25, 97)(26, 116)(27, 135)(28, 154)(29, 173)(32, 50)(33, 69)(34,
88)(35, 107)(36, 126)(37, 145)(38, 164)(42, 60)(43, 79)(44, 98)(45, 117)(46,
136)(47, 155)(48, 174)(52, 70)(53, 89)(54, 108)(55, 127)(56, 146)(57, 165)(62,
80)(63, 99)(64, 118)(65, 137)(66, 156)(67, 175)(72, 90)(73, 109)(74, 128)(75,
147)(76, 166)(82, 100)(83, 119)(84, 138)(85, 157)(86, 176)(92, 110)(93, 129)(94,
148)(95, 167)(102, 120)(103, 139)(104, 158)(105, 177)(112, 130)(113, 149)(114,
168)(122, 140)(123, 159)(124, 178)(132, 150)(133, 169)(142, 160)(143, 179)(152,
170)(162, 180) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180)
c: (2, 162)(3, 143)(4, 124)(5, 105)(6, 86)(7, 67)(8, 48)(9, 29)(11, 171)(12,
152)(13, 133)(14, 114)(15, 95)(16, 76)(17, 57)(18, 38)(20, 180)(21, 161)(22,
142)(23, 123)(24, 104)(25, 85)(26, 66)(27, 47)(30, 170)(31, 151)(32, 132)(33,
113)(34, 94)(35, 75)(36, 56)(39, 179)(40, 160)(41, 141)(42, 122)(43, 103)(44,
84)(45, 65)(49, 169)(50, 150)(51, 131)(52, 112)(53, 93)(54, 74)(58, 178)(59,
159)(60, 140)(61, 121)(62, 102)(63, 83)(68, 168)(69, 149)(70, 130)(71, 111)(72,
92)(77, 177)(78, 158)(79, 139)(80, 120)(81, 101)(87, 167)(88, 148)(89, 129)(90,
110)(96, 176)(97, 157)(98, 138)(99, 119)(106, 166)(107, 147)(108, 128)(115,
175)(116, 156)(117, 137)(125, 165)(126, 146)(134, 174)(135, 155)(144, 164)(153,
173)
C4[ 180, 2 ]
180
-1 2 180 162 20
-2 1 3 163 21
-3 22 2 4 164
-4 165 23 3 5
-5 166 24 4 6
-6 167 25 5 7
-7 168 26 6 8
-8 169 27 7 9
-9 170 28 8 10
-10 11 171 29 9
-11 12 172 30 10
-12 11 13 173 31
-13 12 14 174 32
-14 33 13 15 175
-15 176 34 14 16
-16 177 35 15 17
-17 178 36 16 18
-18 179 37 17 19
-19 180 38 18 20
-20 1 39 19 21
-21 22 2 40 20
-22 23 3 41 21
-23 22 24 4 42
-24 23 25 5 43
-25 44 24 26 6
-26 45 25 27 7
-27 46 26 28 8
-28 47 27 29 9
-29 48 28 30 10
-30 11 49 29 31
-31 12 50 30 32
-32 33 13 51 31
-33 34 14 52 32
-34 33 35 15 53
-35 34 36 16 54
-36 55 35 37 17
-37 56 36 38 18
-38 57 37 39 19
-39 58 38 40 20
-40 59 39 41 21
-41 22 60 40 42
-42 23 61 41 43
-43 44 24 62 42
-44 45 25 63 43
-45 44 46 26 64
-46 45 47 27 65
-47 66 46 48 28
-48 67 47 49 29
-49 68 48 50 30
-50 69 49 51 31
-51 70 50 52 32
-52 33 71 51 53
-53 34 72 52 54
-54 55 35 73 53
-55 56 36 74 54
-56 55 57 37 75
-57 56 58 38 76
-58 77 57 59 39
-59 78 58 60 40
-60 79 59 61 41
-61 80 60 62 42
-62 81 61 63 43
-63 44 82 62 64
-64 45 83 63 65
-65 66 46 84 64
-66 67 47 85 65
-67 66 68 48 86
-68 67 69 49 87
-69 88 68 70 50
-70 89 69 71 51
-71 90 70 72 52
-72 91 71 73 53
-73 92 72 74 54
-74 55 93 73 75
-75 56 94 74 76
-76 77 57 95 75
-77 78 58 96 76
-78 77 79 59 97
-79 78 80 60 98
-80 99 79 81 61
-81 100 80 82 62
-82 101 81 83 63
-83 102 82 84 64
-84 103 83 85 65
-85 66 104 84 86
-86 67 105 85 87
-87 88 68 106 86
-88 89 69 107 87
-89 88 90 70 108
-90 89 91 71 109
-91 110 90 92 72
-92 111 91 93 73
-93 112 92 94 74
-94 113 93 95 75
-95 114 94 96 76
-96 77 115 95 97
-97 78 116 96 98
-98 99 79 117 97
-99 100 80 118 98
-100 99 101 81 119
-101 100 102 82 120
-102 121 101 103 83
-103 122 102 104 84
-104 123 103 105 85
-105 124 104 106 86
-106 125 105 107 87
-107 88 126 106 108
-108 89 127 107 109
-109 110 90 128 108
-110 111 91 129 109
-111 110 112 92 130
-112 111 113 93 131
-113 132 112 114 94
-114 133 113 115 95
-115 134 114 116 96
-116 135 115 117 97
-117 136 116 118 98
-118 99 137 117 119
-119 100 138 118 120
-120 121 101 139 119
-121 122 102 140 120
-122 121 123 103 141
-123 122 124 104 142
-124 143 123 125 105
-125 144 124 126 106
-126 145 125 127 107
-127 146 126 128 108
-128 147 127 129 109
-129 110 148 128 130
-130 111 149 129 131
-131 132 112 150 130
-132 133 113 151 131
-133 132 134 114 152
-134 133 135 115 153
-135 154 134 136 116
-136 155 135 137 117
-137 156 136 138 118
-138 157 137 139 119
-139 158 138 140 120
-140 121 159 139 141
-141 122 160 140 142
-142 143 123 161 141
-143 144 124 162 142
-144 143 145 125 163
-145 144 146 126 164
-146 165 145 147 127
-147 166 146 148 128
-148 167 147 149 129
-149 168 148 150 130
-150 169 149 151 131
-151 132 170 150 152
-152 133 171 151 153
-153 154 134 172 152
-154 155 135 173 153
-155 154 156 136 174
-156 155 157 137 175
-157 176 156 158 138
-158 177 157 159 139
-159 178 158 160 140
-160 179 159 161 141
-161 180 160 162 142
-162 143 1 161 163
-163 144 2 162 164
-164 165 145 3 163
-165 166 146 4 164
-166 165 167 147 5
-167 166 168 148 6
-168 167 169 149 7
-169 168 170 150 8
-170 169 171 151 9
-171 170 172 152 10
-172 11 171 173 153
-173 154 12 172 174
-174 155 13 173 175
-175 176 156 14 174
-176 177 157 15 175
-177 176 178 158 16
-178 177 179 159 17
-179 178 180 160 18
-180 1 179 161 19
0